ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2halvesd Unicode version

Theorem lt2halvesd 9320
Description: A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
rehalfcld.1  |-  ( ph  ->  A  e.  RR )
lt2halvesd.2  |-  ( ph  ->  B  e.  RR )
lt2halvesd.3  |-  ( ph  ->  C  e.  RR )
lt2halvesd.4  |-  ( ph  ->  A  <  ( C  /  2 ) )
lt2halvesd.5  |-  ( ph  ->  B  <  ( C  /  2 ) )
Assertion
Ref Expression
lt2halvesd  |-  ( ph  ->  ( A  +  B
)  <  C )

Proof of Theorem lt2halvesd
StepHypRef Expression
1 lt2halvesd.4 . 2  |-  ( ph  ->  A  <  ( C  /  2 ) )
2 lt2halvesd.5 . 2  |-  ( ph  ->  B  <  ( C  /  2 ) )
3 rehalfcld.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 lt2halvesd.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 lt2halvesd.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 lt2halves 9308 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  ( C  /  2 )  /\  B  <  ( C  / 
2 ) )  -> 
( A  +  B
)  <  C )
)
73, 4, 5, 6syl3anc 1250 . 2  |-  ( ph  ->  ( ( A  < 
( C  /  2
)  /\  B  <  ( C  /  2 ) )  ->  ( A  +  B )  <  C
) )
81, 2, 7mp2and 433 1  |-  ( ph  ->  ( A  +  B
)  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959    + caddc 7963    < clt 8142    / cdiv 8780   2c2 9122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-2 9130
This theorem is referenced by:  abs3lem  11537  qdencn  16168  apdifflemf  16187
  Copyright terms: Public domain W3C validator