Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn Unicode version

Theorem qdencn 16168
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11628 (and also would hold for  RR  X.  RR with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
Assertion
Ref Expression
qdencn  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Distinct variable groups:    x, A    x, B    x, Q
Allowed substitution hints:    A( z)    B( z)    Q( z)

Proof of Theorem qdencn
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  e.  CC )
21recld 11364 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( Re `  A
)  e.  RR )
3 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  B  e.  RR+ )
43rphalfcld 9866 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( B  /  2
)  e.  RR+ )
5 qdenre 11628 . . 3  |-  ( ( ( Re `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
62, 4, 5syl2anc 411 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
7 simpll 527 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
87imcld 11365 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
94adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( B  /  2 )  e.  RR+ )
10 qdenre 11628 . . . 4  |-  ( ( ( Im `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. v  e.  QQ  ( abs `  ( v  -  ( Im `  A ) ) )  <  ( B  / 
2 ) )
118, 9, 10syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. v  e.  QQ  ( abs `  (
v  -  ( Im
`  A ) ) )  <  ( B  /  2 ) )
12 qcn 9790 . . . . . . . 8  |-  ( u  e.  QQ  ->  u  e.  CC )
1312ad2antrl 490 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
1413adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
15 ax-icn 8055 . . . . . . . 8  |-  _i  e.  CC
1615a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  _i  e.  CC )
17 qcn 9790 . . . . . . . 8  |-  ( v  e.  QQ  ->  v  e.  CC )
1817ad2antrl 490 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  CC )
1916, 18mulcld 8128 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  v )  e.  CC )
2014, 19addcld 8127 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  CC )
21 qre 9781 . . . . . . . . . 10  |-  ( u  e.  QQ  ->  u  e.  RR )
2221ad2antrl 490 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
2322adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
24 qre 9781 . . . . . . . . 9  |-  ( v  e.  QQ  ->  v  e.  RR )
2524ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  RR )
2623, 25crred 11402 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  =  u )
27 simplrl 535 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  QQ )
2826, 27eqeltrd 2284 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
2923, 25crimd 11403 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  =  v )
30 simprl 529 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  QQ )
3129, 30eqeltrd 2284 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
3228, 31jca 306 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ  /\  (
Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
33 fveq2 5599 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Re `  z )  =  ( Re `  ( u  +  (
_i  x.  v )
) ) )
3433eleq1d 2276 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Re `  z
)  e.  QQ  <->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
35 fveq2 5599 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Im `  z )  =  ( Im `  ( u  +  (
_i  x.  v )
) ) )
3635eleq1d 2276 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Im `  z
)  e.  QQ  <->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
3734, 36anbi12d 473 . . . . . 6  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( ( Re `  z )  e.  QQ  /\  ( Im `  z
)  e.  QQ )  <-> 
( ( Re `  ( u  +  (
_i  x.  v )
) )  e.  QQ  /\  ( Im `  (
u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
38 qdencn.q . . . . . 6  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
3937, 38elrab2 2939 . . . . 5  |-  ( ( u  +  ( _i  x.  v ) )  e.  Q  <->  ( (
u  +  ( _i  x.  v ) )  e.  CC  /\  (
( Re `  (
u  +  ( _i  x.  v ) ) )  e.  QQ  /\  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
4020, 32, 39sylanbrc 417 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  Q )
417adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
4220, 41subcld 8418 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  e.  CC )
4342abscld 11607 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  e.  RR )
442ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  RR )
4544recnd 8136 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  CC )
4614, 45subcld 8418 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  -  ( Re `  A ) )  e.  CC )
4746abscld 11607 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  e.  RR )
488adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
4948recnd 8136 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  CC )
5018, 49subcld 8418 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( v  -  ( Im `  A ) )  e.  CC )
5150abscld 11607 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  RR )
5247, 51readdcld 8137 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  e.  RR )
533ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR+ )
5453rpred 9853 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR )
551replimd 11367 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
5655oveq2d 5983 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( ( u  +  ( _i  x.  v
) )  -  A
)  =  ( ( u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ) )
5756ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  +  ( _i  x.  v
) )  -  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
5816, 49mulcld 8128 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( Im `  A
) )  e.  CC )
5914, 19, 45, 58addsub4d 8465 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6057, 59eqtrd 2240 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6160fveq2d 5603 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  =  ( abs `  ( ( u  -  ( Re
`  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  (
Im `  A )
) ) ) ) )
6219, 58subcld 8418 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
_i  x.  v )  -  ( _i  x.  ( Im `  A ) ) )  e.  CC )
6346, 62abstrid 11622 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  <_  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) ) )
6461, 63eqbrtrd 4081 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) ) ) )
6516, 50absmuld 11620 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( v  -  (
Im `  A )
) ) ) )
6616, 18, 49subdid 8521 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( v  -  (
Im `  A )
) )  =  ( ( _i  x.  v
)  -  ( _i  x.  ( Im `  A ) ) ) )
6766fveq2d 5603 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
68 absi 11485 . . . . . . . . . 10  |-  ( abs `  _i )  =  1
6968oveq1i 5977 . . . . . . . . 9  |-  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( 1  x.  ( abs `  ( v  -  (
Im `  A )
) ) )
7051recnd 8136 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  CC )
7170mulid2d 8126 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( 1  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7269, 71eqtrid 2252 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7365, 67, 723eqtr3d 2248 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) )  =  ( abs `  ( v  -  (
Im `  A )
) ) )
7473oveq2d 5983 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  =  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) ) )
7564, 74breqtrd 4085 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( v  -  (
Im `  A )
) ) ) )
76 simplrr 536 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  <  ( B  /  2 ) )
77 simprr 531 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) )
7847, 51, 54, 76, 77lt2halvesd 9320 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  <  B )
7943, 52, 54, 75, 78lelttrd 8232 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
)
80 oveq1 5974 . . . . . . 7  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
x  -  A )  =  ( ( u  +  ( _i  x.  v ) )  -  A ) )
8180fveq2d 5603 . . . . . 6  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
( u  +  ( _i  x.  v ) )  -  A ) ) )
8281breq1d 4069 . . . . 5  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
) )
8382rspcev 2884 . . . 4  |-  ( ( ( u  +  ( _i  x.  v ) )  e.  Q  /\  ( abs `  ( ( u  +  ( _i  x.  v ) )  -  A ) )  <  B )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
8440, 79, 83syl2anc 411 . . 3  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
8511, 84rexlimddv 2630 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
866, 85rexlimddv 2630 1  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   E.wrex 2487   {crab 2490   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   1c1 7961   _ici 7962    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278    / cdiv 8780   2c2 9122   QQcq 9775   RR+crp 9810   Recre 11266   Imcim 11267   abscabs 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator