Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn Unicode version

Theorem qdencn 15671
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11367 (and also would hold for  RR  X.  RR with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
Assertion
Ref Expression
qdencn  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Distinct variable groups:    x, A    x, B    x, Q
Allowed substitution hints:    A( z)    B( z)    Q( z)

Proof of Theorem qdencn
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  e.  CC )
21recld 11103 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( Re `  A
)  e.  RR )
3 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  B  e.  RR+ )
43rphalfcld 9784 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( B  /  2
)  e.  RR+ )
5 qdenre 11367 . . 3  |-  ( ( ( Re `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
62, 4, 5syl2anc 411 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
7 simpll 527 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
87imcld 11104 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
94adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( B  /  2 )  e.  RR+ )
10 qdenre 11367 . . . 4  |-  ( ( ( Im `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. v  e.  QQ  ( abs `  ( v  -  ( Im `  A ) ) )  <  ( B  / 
2 ) )
118, 9, 10syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. v  e.  QQ  ( abs `  (
v  -  ( Im
`  A ) ) )  <  ( B  /  2 ) )
12 qcn 9708 . . . . . . . 8  |-  ( u  e.  QQ  ->  u  e.  CC )
1312ad2antrl 490 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
1413adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
15 ax-icn 7974 . . . . . . . 8  |-  _i  e.  CC
1615a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  _i  e.  CC )
17 qcn 9708 . . . . . . . 8  |-  ( v  e.  QQ  ->  v  e.  CC )
1817ad2antrl 490 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  CC )
1916, 18mulcld 8047 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  v )  e.  CC )
2014, 19addcld 8046 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  CC )
21 qre 9699 . . . . . . . . . 10  |-  ( u  e.  QQ  ->  u  e.  RR )
2221ad2antrl 490 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
2322adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
24 qre 9699 . . . . . . . . 9  |-  ( v  e.  QQ  ->  v  e.  RR )
2524ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  RR )
2623, 25crred 11141 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  =  u )
27 simplrl 535 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  QQ )
2826, 27eqeltrd 2273 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
2923, 25crimd 11142 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  =  v )
30 simprl 529 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  QQ )
3129, 30eqeltrd 2273 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
3228, 31jca 306 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ  /\  (
Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
33 fveq2 5558 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Re `  z )  =  ( Re `  ( u  +  (
_i  x.  v )
) ) )
3433eleq1d 2265 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Re `  z
)  e.  QQ  <->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
35 fveq2 5558 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Im `  z )  =  ( Im `  ( u  +  (
_i  x.  v )
) ) )
3635eleq1d 2265 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Im `  z
)  e.  QQ  <->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
3734, 36anbi12d 473 . . . . . 6  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( ( Re `  z )  e.  QQ  /\  ( Im `  z
)  e.  QQ )  <-> 
( ( Re `  ( u  +  (
_i  x.  v )
) )  e.  QQ  /\  ( Im `  (
u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
38 qdencn.q . . . . . 6  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
3937, 38elrab2 2923 . . . . 5  |-  ( ( u  +  ( _i  x.  v ) )  e.  Q  <->  ( (
u  +  ( _i  x.  v ) )  e.  CC  /\  (
( Re `  (
u  +  ( _i  x.  v ) ) )  e.  QQ  /\  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
4020, 32, 39sylanbrc 417 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  Q )
417adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
4220, 41subcld 8337 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  e.  CC )
4342abscld 11346 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  e.  RR )
442ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  RR )
4544recnd 8055 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  CC )
4614, 45subcld 8337 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  -  ( Re `  A ) )  e.  CC )
4746abscld 11346 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  e.  RR )
488adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
4948recnd 8055 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  CC )
5018, 49subcld 8337 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( v  -  ( Im `  A ) )  e.  CC )
5150abscld 11346 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  RR )
5247, 51readdcld 8056 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  e.  RR )
533ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR+ )
5453rpred 9771 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR )
551replimd 11106 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
5655oveq2d 5938 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( ( u  +  ( _i  x.  v
) )  -  A
)  =  ( ( u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ) )
5756ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  +  ( _i  x.  v
) )  -  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
5816, 49mulcld 8047 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( Im `  A
) )  e.  CC )
5914, 19, 45, 58addsub4d 8384 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6057, 59eqtrd 2229 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6160fveq2d 5562 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  =  ( abs `  ( ( u  -  ( Re
`  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  (
Im `  A )
) ) ) ) )
6219, 58subcld 8337 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
_i  x.  v )  -  ( _i  x.  ( Im `  A ) ) )  e.  CC )
6346, 62abstrid 11361 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  <_  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) ) )
6461, 63eqbrtrd 4055 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) ) ) )
6516, 50absmuld 11359 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( v  -  (
Im `  A )
) ) ) )
6616, 18, 49subdid 8440 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( v  -  (
Im `  A )
) )  =  ( ( _i  x.  v
)  -  ( _i  x.  ( Im `  A ) ) ) )
6766fveq2d 5562 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
68 absi 11224 . . . . . . . . . 10  |-  ( abs `  _i )  =  1
6968oveq1i 5932 . . . . . . . . 9  |-  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( 1  x.  ( abs `  ( v  -  (
Im `  A )
) ) )
7051recnd 8055 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  CC )
7170mulid2d 8045 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( 1  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7269, 71eqtrid 2241 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7365, 67, 723eqtr3d 2237 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) )  =  ( abs `  ( v  -  (
Im `  A )
) ) )
7473oveq2d 5938 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  =  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) ) )
7564, 74breqtrd 4059 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( v  -  (
Im `  A )
) ) ) )
76 simplrr 536 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  <  ( B  /  2 ) )
77 simprr 531 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) )
7847, 51, 54, 76, 77lt2halvesd 9239 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  <  B )
7943, 52, 54, 75, 78lelttrd 8151 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
)
80 oveq1 5929 . . . . . . 7  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
x  -  A )  =  ( ( u  +  ( _i  x.  v ) )  -  A ) )
8180fveq2d 5562 . . . . . 6  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
( u  +  ( _i  x.  v ) )  -  A ) ) )
8281breq1d 4043 . . . . 5  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
) )
8382rspcev 2868 . . . 4  |-  ( ( ( u  +  ( _i  x.  v ) )  e.  Q  /\  ( abs `  ( ( u  +  ( _i  x.  v ) )  -  A ) )  <  B )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
8440, 79, 83syl2anc 411 . . 3  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
8511, 84rexlimddv 2619 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
866, 85rexlimddv 2619 1  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   {crab 2479   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   1c1 7880   _ici 7881    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   2c2 9041   QQcq 9693   RR+crp 9728   Recre 11005   Imcim 11006   abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator