Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn Unicode version

Theorem qdencn 13222
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 10974 (and also would hold for  RR  X.  RR with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
Assertion
Ref Expression
qdencn  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Distinct variable groups:    x, A    x, B    x, Q
Allowed substitution hints:    A( z)    B( z)    Q( z)

Proof of Theorem qdencn
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  e.  CC )
21recld 10710 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( Re `  A
)  e.  RR )
3 simpr 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  B  e.  RR+ )
43rphalfcld 9496 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( B  /  2
)  e.  RR+ )
5 qdenre 10974 . . 3  |-  ( ( ( Re `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
62, 4, 5syl2anc 408 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. u  e.  QQ  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) )
7 simpll 518 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
87imcld 10711 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
94adantr 274 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  ( B  /  2 )  e.  RR+ )
10 qdenre 10974 . . . 4  |-  ( ( ( Im `  A
)  e.  RR  /\  ( B  /  2
)  e.  RR+ )  ->  E. v  e.  QQ  ( abs `  ( v  -  ( Im `  A ) ) )  <  ( B  / 
2 ) )
118, 9, 10syl2anc 408 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. v  e.  QQ  ( abs `  (
v  -  ( Im
`  A ) ) )  <  ( B  /  2 ) )
12 qcn 9426 . . . . . . . 8  |-  ( u  e.  QQ  ->  u  e.  CC )
1312ad2antrl 481 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
1413adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  CC )
15 ax-icn 7715 . . . . . . . 8  |-  _i  e.  CC
1615a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  _i  e.  CC )
17 qcn 9426 . . . . . . . 8  |-  ( v  e.  QQ  ->  v  e.  CC )
1817ad2antrl 481 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  CC )
1916, 18mulcld 7786 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  v )  e.  CC )
2014, 19addcld 7785 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  CC )
21 qre 9417 . . . . . . . . . 10  |-  ( u  e.  QQ  ->  u  e.  RR )
2221ad2antrl 481 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
2322adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  RR )
24 qre 9417 . . . . . . . . 9  |-  ( v  e.  QQ  ->  v  e.  RR )
2524ad2antrl 481 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  RR )
2623, 25crred 10748 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  =  u )
27 simplrl 524 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  u  e.  QQ )
2826, 27eqeltrd 2216 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
2923, 25crimd 10749 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  =  v )
30 simprl 520 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  v  e.  QQ )
3129, 30eqeltrd 2216 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ )
3228, 31jca 304 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ  /\  (
Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
33 fveq2 5421 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Re `  z )  =  ( Re `  ( u  +  (
_i  x.  v )
) ) )
3433eleq1d 2208 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Re `  z
)  e.  QQ  <->  ( Re `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
35 fveq2 5421 . . . . . . . 8  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
Im `  z )  =  ( Im `  ( u  +  (
_i  x.  v )
) ) )
3635eleq1d 2208 . . . . . . 7  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( Im `  z
)  e.  QQ  <->  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) )
3734, 36anbi12d 464 . . . . . 6  |-  ( z  =  ( u  +  ( _i  x.  v
) )  ->  (
( ( Re `  z )  e.  QQ  /\  ( Im `  z
)  e.  QQ )  <-> 
( ( Re `  ( u  +  (
_i  x.  v )
) )  e.  QQ  /\  ( Im `  (
u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
38 qdencn.q . . . . . 6  |-  Q  =  { z  e.  CC  |  ( ( Re
`  z )  e.  QQ  /\  ( Im
`  z )  e.  QQ ) }
3937, 38elrab2 2843 . . . . 5  |-  ( ( u  +  ( _i  x.  v ) )  e.  Q  <->  ( (
u  +  ( _i  x.  v ) )  e.  CC  /\  (
( Re `  (
u  +  ( _i  x.  v ) ) )  e.  QQ  /\  ( Im `  ( u  +  ( _i  x.  v ) ) )  e.  QQ ) ) )
4020, 32, 39sylanbrc 413 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  +  ( _i  x.  v ) )  e.  Q )
417adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  A  e.  CC )
4220, 41subcld 8073 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  e.  CC )
4342abscld 10953 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  e.  RR )
442ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  RR )
4544recnd 7794 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Re `  A )  e.  CC )
4614, 45subcld 8073 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( u  -  ( Re `  A ) )  e.  CC )
4746abscld 10953 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  e.  RR )
488adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  RR )
4948recnd 7794 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( Im `  A )  e.  CC )
5018, 49subcld 8073 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( v  -  ( Im `  A ) )  e.  CC )
5150abscld 10953 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  RR )
5247, 51readdcld 7795 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  e.  RR )
533ad2antrr 479 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR+ )
5453rpred 9483 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  B  e.  RR )
551replimd 10713 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
5655oveq2d 5790 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  -> 
( ( u  +  ( _i  x.  v
) )  -  A
)  =  ( ( u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ) )
5756ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  +  ( _i  x.  v
) )  -  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
5816, 49mulcld 7786 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( Im `  A
) )  e.  CC )
5914, 19, 45, 58addsub4d 8120 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6057, 59eqtrd 2172 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
u  +  ( _i  x.  v ) )  -  A )  =  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
6160fveq2d 5425 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  =  ( abs `  ( ( u  -  ( Re
`  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  (
Im `  A )
) ) ) ) )
6219, 58subcld 8073 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( (
_i  x.  v )  -  ( _i  x.  ( Im `  A ) ) )  e.  CC )
6346, 62abstrid 10968 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  -  ( Re `  A ) )  +  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  <_  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) ) )
6461, 63eqbrtrd 3950 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) ) ) )
6516, 50absmuld 10966 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( v  -  (
Im `  A )
) ) ) )
6616, 18, 49subdid 8176 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( _i  x.  ( v  -  (
Im `  A )
) )  =  ( ( _i  x.  v
)  -  ( _i  x.  ( Im `  A ) ) ) )
6766fveq2d 5425 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( _i  x.  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )
68 absi 10831 . . . . . . . . . 10  |-  ( abs `  _i )  =  1
6968oveq1i 5784 . . . . . . . . 9  |-  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( 1  x.  ( abs `  ( v  -  (
Im `  A )
) ) )
7051recnd 7794 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  e.  CC )
7170mulid2d 7784 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( 1  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7269, 71syl5eq 2184 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  _i )  x.  ( abs `  (
v  -  ( Im
`  A ) ) ) )  =  ( abs `  ( v  -  ( Im `  A ) ) ) )
7365, 67, 723eqtr3d 2180 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( _i  x.  v )  -  (
_i  x.  ( Im `  A ) ) ) )  =  ( abs `  ( v  -  (
Im `  A )
) ) )
7473oveq2d 5790 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( ( _i  x.  v )  -  ( _i  x.  ( Im `  A ) ) ) ) )  =  ( ( abs `  ( u  -  (
Re `  A )
) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) ) )
7564, 74breqtrd 3954 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <_  (
( abs `  (
u  -  ( Re
`  A ) ) )  +  ( abs `  ( v  -  (
Im `  A )
) ) ) )
76 simplrr 525 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( u  -  (
Re `  A )
) )  <  ( B  /  2 ) )
77 simprr 521 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) )
7847, 51, 54, 76, 77lt2halvesd 8967 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( ( abs `  ( u  -  ( Re `  A ) ) )  +  ( abs `  ( v  -  ( Im `  A ) ) ) )  <  B )
7943, 52, 54, 75, 78lelttrd 7887 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
)
80 oveq1 5781 . . . . . . 7  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
x  -  A )  =  ( ( u  +  ( _i  x.  v ) )  -  A ) )
8180fveq2d 5425 . . . . . 6  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
( u  +  ( _i  x.  v ) )  -  A ) ) )
8281breq1d 3939 . . . . 5  |-  ( x  =  ( u  +  ( _i  x.  v
) )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( ( u  +  ( _i  x.  v
) )  -  A
) )  <  B
) )
8382rspcev 2789 . . . 4  |-  ( ( ( u  +  ( _i  x.  v ) )  e.  Q  /\  ( abs `  ( ( u  +  ( _i  x.  v ) )  -  A ) )  <  B )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
8440, 79, 83syl2anc 408 . . 3  |-  ( ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  (
u  e.  QQ  /\  ( abs `  ( u  -  ( Re `  A ) ) )  <  ( B  / 
2 ) ) )  /\  ( v  e.  QQ  /\  ( abs `  ( v  -  (
Im `  A )
) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
8511, 84rexlimddv 2554 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  RR+ )  /\  ( u  e.  QQ  /\  ( abs `  (
u  -  ( Re
`  A ) ) )  <  ( B  /  2 ) ) )  ->  E. x  e.  Q  ( abs `  ( x  -  A
) )  <  B
)
866, 85rexlimddv 2554 1  |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2417   {crab 2420   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   1c1 7621   _ici 7622    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801    - cmin 7933    / cdiv 8432   2c2 8771   QQcq 9411   RR+crp 9441   Recre 10612   Imcim 10613   abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator