| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rehalfcld | Unicode version | ||
| Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rehalfcld.1 |
|
| Ref | Expression |
|---|---|
| rehalfcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcld.1 |
. 2
| |
| 2 | rehalfcl 9338 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-2 9169 |
| This theorem is referenced by: div4p1lem1div2 9365 fldiv4p1lem1div2 10525 fldiv4lem1div2uz2 10526 facavg 10968 recl 11364 crre 11368 cvg1nlemres 11496 recvguniqlem 11505 resqrexlemp1rp 11517 resqrexlemfp1 11520 maxabslemlub 11718 maxabslemval 11719 maxcl 11721 resin4p 12229 recos4p 12230 cos01bnd 12269 cos12dec 12279 nno 12417 4sqlem5 12905 4sqlem6 12906 4sqlem10 12910 4sqlem15 12928 4sqlem16 12929 blhalf 15082 ioo2bl 15225 ioo2blex 15226 maxcncf 15289 mincncf 15290 cosordlem 15523 gausslemma2dlem1a 15737 gausslemma2dlem2 15741 gausslemma2dlem3 15742 lgsquadlem1 15756 lgsquadlem2 15757 2lgslem1a2 15766 2lgslem1c 15769 2sqlem8 15802 apdifflemf 16414 |
| Copyright terms: Public domain | W3C validator |