ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rehalfcld Unicode version

Theorem rehalfcld 9319
Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
rehalfcld.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
rehalfcld  |-  ( ph  ->  ( A  /  2
)  e.  RR )

Proof of Theorem rehalfcld
StepHypRef Expression
1 rehalfcld.1 . 2  |-  ( ph  ->  A  e.  RR )
2 rehalfcl 9299 . 2  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
31, 2syl 14 1  |-  ( ph  ->  ( A  /  2
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178  (class class class)co 5967   RRcr 7959    / cdiv 8780   2c2 9122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-2 9130
This theorem is referenced by:  div4p1lem1div2  9326  fldiv4p1lem1div2  10485  fldiv4lem1div2uz2  10486  facavg  10928  recl  11279  crre  11283  cvg1nlemres  11411  recvguniqlem  11420  resqrexlemp1rp  11432  resqrexlemfp1  11435  maxabslemlub  11633  maxabslemval  11634  maxcl  11636  resin4p  12144  recos4p  12145  cos01bnd  12184  cos12dec  12194  nno  12332  4sqlem5  12820  4sqlem6  12821  4sqlem10  12825  4sqlem15  12843  4sqlem16  12844  blhalf  14995  ioo2bl  15138  ioo2blex  15139  maxcncf  15202  mincncf  15203  cosordlem  15436  gausslemma2dlem1a  15650  gausslemma2dlem2  15654  gausslemma2dlem3  15655  lgsquadlem1  15669  lgsquadlem2  15670  2lgslem1a2  15679  2lgslem1c  15682  2sqlem8  15715  apdifflemf  16187
  Copyright terms: Public domain W3C validator