ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rehalfcld Unicode version

Theorem rehalfcld 8818
Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
rehalfcld.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
rehalfcld  |-  ( ph  ->  ( A  /  2
)  e.  RR )

Proof of Theorem rehalfcld
StepHypRef Expression
1 rehalfcld.1 . 2  |-  ( ph  ->  A  e.  RR )
2 rehalfcl 8799 . 2  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
31, 2syl 14 1  |-  ( ph  ->  ( A  /  2
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1448  (class class class)co 5706   RRcr 7499    / cdiv 8293   2c2 8629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-2 8637
This theorem is referenced by:  div4p1lem1div2  8825  fldiv4p1lem1div2  9919  facavg  10333  recl  10466  crre  10470  cvg1nlemres  10597  recvguniqlem  10606  resqrexlemp1rp  10618  resqrexlemfp1  10621  maxabslemlub  10819  maxabslemval  10820  maxcl  10822  resin4p  11223  recos4p  11224  cos01bnd  11263  nno  11398  blhalf  12336  ioo2bl  12462  ioo2blex  12463
  Copyright terms: Public domain W3C validator