| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > apdifflemf | Unicode version | ||
| Description: Lemma for apdiff 16061. Being apart from the point halfway between
|
| Ref | Expression |
|---|---|
| apdifflemf.a |
|
| apdifflemf.q |
|
| apdifflemf.r |
|
| apdifflemf.qr |
|
| apdifflemf.ap |
|
| Ref | Expression |
|---|---|
| apdifflemf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | apdifflemf.a |
. . . . . . 7
| |
| 2 | 1 | recnd 8108 |
. . . . . 6
|
| 3 | apdifflemf.r |
. . . . . . 7
| |
| 4 | qcn 9762 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 2, 5 | subcld 8390 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | 7 | abscld 11536 |
. . 3
|
| 9 | apdifflemf.q |
. . . . . . 7
| |
| 10 | qcn 9762 |
. . . . . . 7
| |
| 11 | 9, 10 | syl 14 |
. . . . . 6
|
| 12 | 2, 11 | subcld 8390 |
. . . . 5
|
| 13 | 12 | abscld 11536 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | qre 9753 |
. . . . . . . . . 10
| |
| 16 | 9, 15 | syl 14 |
. . . . . . . . 9
|
| 17 | 16 | adantr 276 |
. . . . . . . 8
|
| 18 | 1 | adantr 276 |
. . . . . . . 8
|
| 19 | qaddcl 9763 |
. . . . . . . . . . . . . 14
| |
| 20 | 9, 3, 19 | syl2anc 411 |
. . . . . . . . . . . . 13
|
| 21 | qre 9753 |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . . . . . 12
|
| 23 | 22 | rehalfcld 9291 |
. . . . . . . . . . 11
|
| 24 | 23 | adantr 276 |
. . . . . . . . . 10
|
| 25 | apdifflemf.qr |
. . . . . . . . . . . 12
| |
| 26 | qre 9753 |
. . . . . . . . . . . . . 14
| |
| 27 | 3, 26 | syl 14 |
. . . . . . . . . . . . 13
|
| 28 | avglt1 9283 |
. . . . . . . . . . . . 13
| |
| 29 | 16, 27, 28 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 30 | 25, 29 | mpbid 147 |
. . . . . . . . . . 11
|
| 31 | 30 | adantr 276 |
. . . . . . . . . 10
|
| 32 | simpr 110 |
. . . . . . . . . 10
| |
| 33 | 17, 24, 18, 31, 32 | lttrd 8205 |
. . . . . . . . 9
|
| 34 | 17, 18, 33 | ltled 8198 |
. . . . . . . 8
|
| 35 | 17, 18, 34 | abssubge0d 11531 |
. . . . . . 7
|
| 36 | 35 | oveq2d 5967 |
. . . . . 6
|
| 37 | 5 | adantr 276 |
. . . . . . 7
|
| 38 | 2 | adantr 276 |
. . . . . . 7
|
| 39 | 11 | adantr 276 |
. . . . . . 7
|
| 40 | 37, 38, 39 | subsub3d 8420 |
. . . . . 6
|
| 41 | 37, 39 | addcomd 8230 |
. . . . . . 7
|
| 42 | 41 | oveq1d 5966 |
. . . . . 6
|
| 43 | 36, 40, 42 | 3eqtrd 2243 |
. . . . 5
|
| 44 | 22 | adantr 276 |
. . . . . . . . 9
|
| 45 | 2rp 9787 |
. . . . . . . . . 10
| |
| 46 | 45 | a1i 9 |
. . . . . . . . 9
|
| 47 | 44, 18, 46 | ltdivmuld 9877 |
. . . . . . . 8
|
| 48 | 32, 47 | mpbid 147 |
. . . . . . 7
|
| 49 | 38 | 2timesd 9287 |
. . . . . . 7
|
| 50 | 48, 49 | breqtrd 4073 |
. . . . . 6
|
| 51 | 44, 18, 18 | ltsubaddd 8621 |
. . . . . 6
|
| 52 | 50, 51 | mpbird 167 |
. . . . 5
|
| 53 | 43, 52 | eqbrtrd 4069 |
. . . 4
|
| 54 | 25 | adantr 276 |
. . . . . . 7
|
| 55 | 27 | adantr 276 |
. . . . . . . 8
|
| 56 | difrp 9821 |
. . . . . . . 8
| |
| 57 | 17, 55, 56 | syl2anc 411 |
. . . . . . 7
|
| 58 | 54, 57 | mpbid 147 |
. . . . . 6
|
| 59 | 18, 58 | ltaddrpd 9859 |
. . . . 5
|
| 60 | 35 | oveq2d 5967 |
. . . . . 6
|
| 61 | 37, 38, 39 | addsub12d 8413 |
. . . . . 6
|
| 62 | 60, 61 | eqtrd 2239 |
. . . . 5
|
| 63 | 59, 62 | breqtrrd 4075 |
. . . 4
|
| 64 | 18, 55, 14 | absdifltd 11533 |
. . . 4
|
| 65 | 53, 63, 64 | mpbir2and 947 |
. . 3
|
| 66 | 8, 14, 65 | gtapd 8717 |
. 2
|
| 67 | 13 | adantr 276 |
. . 3
|
| 68 | 6 | adantr 276 |
. . . 4
|
| 69 | 68 | abscld 11536 |
. . 3
|
| 70 | 11, 5, 2 | subsubd 8418 |
. . . . . . 7
|
| 71 | 16, 27 | sublt0d 8650 |
. . . . . . . . 9
|
| 72 | 25, 71 | mpbird 167 |
. . . . . . . 8
|
| 73 | 16, 27 | resubcld 8460 |
. . . . . . . . 9
|
| 74 | ltaddnegr 8505 |
. . . . . . . . 9
| |
| 75 | 73, 1, 74 | syl2anc 411 |
. . . . . . . 8
|
| 76 | 72, 75 | mpbid 147 |
. . . . . . 7
|
| 77 | 70, 76 | eqbrtrd 4069 |
. . . . . 6
|
| 78 | 77 | adantr 276 |
. . . . 5
|
| 79 | 1 | adantr 276 |
. . . . . . . 8
|
| 80 | 22 | adantr 276 |
. . . . . . . 8
|
| 81 | simpr 110 |
. . . . . . . 8
| |
| 82 | 79, 79, 80, 81, 81 | lt2halvesd 9292 |
. . . . . . 7
|
| 83 | 79, 79, 80 | ltaddsub2d 8626 |
. . . . . . 7
|
| 84 | 82, 83 | mpbid 147 |
. . . . . 6
|
| 85 | 11 | adantr 276 |
. . . . . . 7
|
| 86 | 5 | adantr 276 |
. . . . . . 7
|
| 87 | 2 | adantr 276 |
. . . . . . 7
|
| 88 | 85, 86, 87 | addsubassd 8410 |
. . . . . 6
|
| 89 | 84, 88 | breqtrd 4073 |
. . . . 5
|
| 90 | 16 | adantr 276 |
. . . . . 6
|
| 91 | 27 | adantr 276 |
. . . . . . 7
|
| 92 | 91, 79 | resubcld 8460 |
. . . . . 6
|
| 93 | 79, 90, 92 | absdifltd 11533 |
. . . . 5
|
| 94 | 78, 89, 93 | mpbir2and 947 |
. . . 4
|
| 95 | 23 | adantr 276 |
. . . . . . 7
|
| 96 | avglt2 9284 |
. . . . . . . . . 10
| |
| 97 | 16, 27, 96 | syl2anc 411 |
. . . . . . . . 9
|
| 98 | 25, 97 | mpbid 147 |
. . . . . . . 8
|
| 99 | 98 | adantr 276 |
. . . . . . 7
|
| 100 | 79, 95, 91, 81, 99 | lttrd 8205 |
. . . . . 6
|
| 101 | 79, 91, 100 | ltled 8198 |
. . . . 5
|
| 102 | 79, 91, 101 | abssuble0d 11532 |
. . . 4
|
| 103 | 94, 102 | breqtrrd 4075 |
. . 3
|
| 104 | 67, 69, 103 | ltapd 8718 |
. 2
|
| 105 | apdifflemf.ap |
. . 3
| |
| 106 | reaplt 8668 |
. . . 4
| |
| 107 | 23, 1, 106 | syl2anc 411 |
. . 3
|
| 108 | 105, 107 | mpbid 147 |
. 2
|
| 109 | 66, 104, 108 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 |
| This theorem is referenced by: apdiff 16061 |
| Copyright terms: Public domain | W3C validator |