| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > apdifflemf | Unicode version | ||
| Description: Lemma for apdiff 16446. Being apart from the point halfway between
|
| Ref | Expression |
|---|---|
| apdifflemf.a |
|
| apdifflemf.q |
|
| apdifflemf.r |
|
| apdifflemf.qr |
|
| apdifflemf.ap |
|
| Ref | Expression |
|---|---|
| apdifflemf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | apdifflemf.a |
. . . . . . 7
| |
| 2 | 1 | recnd 8183 |
. . . . . 6
|
| 3 | apdifflemf.r |
. . . . . . 7
| |
| 4 | qcn 9837 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 2, 5 | subcld 8465 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | 7 | abscld 11700 |
. . 3
|
| 9 | apdifflemf.q |
. . . . . . 7
| |
| 10 | qcn 9837 |
. . . . . . 7
| |
| 11 | 9, 10 | syl 14 |
. . . . . 6
|
| 12 | 2, 11 | subcld 8465 |
. . . . 5
|
| 13 | 12 | abscld 11700 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | qre 9828 |
. . . . . . . . . 10
| |
| 16 | 9, 15 | syl 14 |
. . . . . . . . 9
|
| 17 | 16 | adantr 276 |
. . . . . . . 8
|
| 18 | 1 | adantr 276 |
. . . . . . . 8
|
| 19 | qaddcl 9838 |
. . . . . . . . . . . . . 14
| |
| 20 | 9, 3, 19 | syl2anc 411 |
. . . . . . . . . . . . 13
|
| 21 | qre 9828 |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . . . . . 12
|
| 23 | 22 | rehalfcld 9366 |
. . . . . . . . . . 11
|
| 24 | 23 | adantr 276 |
. . . . . . . . . 10
|
| 25 | apdifflemf.qr |
. . . . . . . . . . . 12
| |
| 26 | qre 9828 |
. . . . . . . . . . . . . 14
| |
| 27 | 3, 26 | syl 14 |
. . . . . . . . . . . . 13
|
| 28 | avglt1 9358 |
. . . . . . . . . . . . 13
| |
| 29 | 16, 27, 28 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 30 | 25, 29 | mpbid 147 |
. . . . . . . . . . 11
|
| 31 | 30 | adantr 276 |
. . . . . . . . . 10
|
| 32 | simpr 110 |
. . . . . . . . . 10
| |
| 33 | 17, 24, 18, 31, 32 | lttrd 8280 |
. . . . . . . . 9
|
| 34 | 17, 18, 33 | ltled 8273 |
. . . . . . . 8
|
| 35 | 17, 18, 34 | abssubge0d 11695 |
. . . . . . 7
|
| 36 | 35 | oveq2d 6023 |
. . . . . 6
|
| 37 | 5 | adantr 276 |
. . . . . . 7
|
| 38 | 2 | adantr 276 |
. . . . . . 7
|
| 39 | 11 | adantr 276 |
. . . . . . 7
|
| 40 | 37, 38, 39 | subsub3d 8495 |
. . . . . 6
|
| 41 | 37, 39 | addcomd 8305 |
. . . . . . 7
|
| 42 | 41 | oveq1d 6022 |
. . . . . 6
|
| 43 | 36, 40, 42 | 3eqtrd 2266 |
. . . . 5
|
| 44 | 22 | adantr 276 |
. . . . . . . . 9
|
| 45 | 2rp 9862 |
. . . . . . . . . 10
| |
| 46 | 45 | a1i 9 |
. . . . . . . . 9
|
| 47 | 44, 18, 46 | ltdivmuld 9952 |
. . . . . . . 8
|
| 48 | 32, 47 | mpbid 147 |
. . . . . . 7
|
| 49 | 38 | 2timesd 9362 |
. . . . . . 7
|
| 50 | 48, 49 | breqtrd 4109 |
. . . . . 6
|
| 51 | 44, 18, 18 | ltsubaddd 8696 |
. . . . . 6
|
| 52 | 50, 51 | mpbird 167 |
. . . . 5
|
| 53 | 43, 52 | eqbrtrd 4105 |
. . . 4
|
| 54 | 25 | adantr 276 |
. . . . . . 7
|
| 55 | 27 | adantr 276 |
. . . . . . . 8
|
| 56 | difrp 9896 |
. . . . . . . 8
| |
| 57 | 17, 55, 56 | syl2anc 411 |
. . . . . . 7
|
| 58 | 54, 57 | mpbid 147 |
. . . . . 6
|
| 59 | 18, 58 | ltaddrpd 9934 |
. . . . 5
|
| 60 | 35 | oveq2d 6023 |
. . . . . 6
|
| 61 | 37, 38, 39 | addsub12d 8488 |
. . . . . 6
|
| 62 | 60, 61 | eqtrd 2262 |
. . . . 5
|
| 63 | 59, 62 | breqtrrd 4111 |
. . . 4
|
| 64 | 18, 55, 14 | absdifltd 11697 |
. . . 4
|
| 65 | 53, 63, 64 | mpbir2and 950 |
. . 3
|
| 66 | 8, 14, 65 | gtapd 8792 |
. 2
|
| 67 | 13 | adantr 276 |
. . 3
|
| 68 | 6 | adantr 276 |
. . . 4
|
| 69 | 68 | abscld 11700 |
. . 3
|
| 70 | 11, 5, 2 | subsubd 8493 |
. . . . . . 7
|
| 71 | 16, 27 | sublt0d 8725 |
. . . . . . . . 9
|
| 72 | 25, 71 | mpbird 167 |
. . . . . . . 8
|
| 73 | 16, 27 | resubcld 8535 |
. . . . . . . . 9
|
| 74 | ltaddnegr 8580 |
. . . . . . . . 9
| |
| 75 | 73, 1, 74 | syl2anc 411 |
. . . . . . . 8
|
| 76 | 72, 75 | mpbid 147 |
. . . . . . 7
|
| 77 | 70, 76 | eqbrtrd 4105 |
. . . . . 6
|
| 78 | 77 | adantr 276 |
. . . . 5
|
| 79 | 1 | adantr 276 |
. . . . . . . 8
|
| 80 | 22 | adantr 276 |
. . . . . . . 8
|
| 81 | simpr 110 |
. . . . . . . 8
| |
| 82 | 79, 79, 80, 81, 81 | lt2halvesd 9367 |
. . . . . . 7
|
| 83 | 79, 79, 80 | ltaddsub2d 8701 |
. . . . . . 7
|
| 84 | 82, 83 | mpbid 147 |
. . . . . 6
|
| 85 | 11 | adantr 276 |
. . . . . . 7
|
| 86 | 5 | adantr 276 |
. . . . . . 7
|
| 87 | 2 | adantr 276 |
. . . . . . 7
|
| 88 | 85, 86, 87 | addsubassd 8485 |
. . . . . 6
|
| 89 | 84, 88 | breqtrd 4109 |
. . . . 5
|
| 90 | 16 | adantr 276 |
. . . . . 6
|
| 91 | 27 | adantr 276 |
. . . . . . 7
|
| 92 | 91, 79 | resubcld 8535 |
. . . . . 6
|
| 93 | 79, 90, 92 | absdifltd 11697 |
. . . . 5
|
| 94 | 78, 89, 93 | mpbir2and 950 |
. . . 4
|
| 95 | 23 | adantr 276 |
. . . . . . 7
|
| 96 | avglt2 9359 |
. . . . . . . . . 10
| |
| 97 | 16, 27, 96 | syl2anc 411 |
. . . . . . . . 9
|
| 98 | 25, 97 | mpbid 147 |
. . . . . . . 8
|
| 99 | 98 | adantr 276 |
. . . . . . 7
|
| 100 | 79, 95, 91, 81, 99 | lttrd 8280 |
. . . . . 6
|
| 101 | 79, 91, 100 | ltled 8273 |
. . . . 5
|
| 102 | 79, 91, 101 | abssuble0d 11696 |
. . . 4
|
| 103 | 94, 102 | breqtrrd 4111 |
. . 3
|
| 104 | 67, 69, 103 | ltapd 8793 |
. 2
|
| 105 | apdifflemf.ap |
. . 3
| |
| 106 | reaplt 8743 |
. . . 4
| |
| 107 | 23, 1, 106 | syl2anc 411 |
. . 3
|
| 108 | 105, 107 | mpbid 147 |
. 2
|
| 109 | 66, 104, 108 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 |
| This theorem is referenced by: apdiff 16446 |
| Copyright terms: Public domain | W3C validator |