| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > apdifflemf | Unicode version | ||
| Description: Lemma for apdiff 15692.  Being apart from the point halfway between
 | 
| Ref | Expression | 
|---|---|
| apdifflemf.a | 
 | 
| apdifflemf.q | 
 | 
| apdifflemf.r | 
 | 
| apdifflemf.qr | 
 | 
| apdifflemf.ap | 
 | 
| Ref | Expression | 
|---|---|
| apdifflemf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | apdifflemf.a | 
. . . . . . 7
 | |
| 2 | 1 | recnd 8055 | 
. . . . . 6
 | 
| 3 | apdifflemf.r | 
. . . . . . 7
 | |
| 4 | qcn 9708 | 
. . . . . . 7
 | |
| 5 | 3, 4 | syl 14 | 
. . . . . 6
 | 
| 6 | 2, 5 | subcld 8337 | 
. . . . 5
 | 
| 7 | 6 | adantr 276 | 
. . . 4
 | 
| 8 | 7 | abscld 11346 | 
. . 3
 | 
| 9 | apdifflemf.q | 
. . . . . . 7
 | |
| 10 | qcn 9708 | 
. . . . . . 7
 | |
| 11 | 9, 10 | syl 14 | 
. . . . . 6
 | 
| 12 | 2, 11 | subcld 8337 | 
. . . . 5
 | 
| 13 | 12 | abscld 11346 | 
. . . 4
 | 
| 14 | 13 | adantr 276 | 
. . 3
 | 
| 15 | qre 9699 | 
. . . . . . . . . 10
 | |
| 16 | 9, 15 | syl 14 | 
. . . . . . . . 9
 | 
| 17 | 16 | adantr 276 | 
. . . . . . . 8
 | 
| 18 | 1 | adantr 276 | 
. . . . . . . 8
 | 
| 19 | qaddcl 9709 | 
. . . . . . . . . . . . . 14
 | |
| 20 | 9, 3, 19 | syl2anc 411 | 
. . . . . . . . . . . . 13
 | 
| 21 | qre 9699 | 
. . . . . . . . . . . . 13
 | |
| 22 | 20, 21 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 23 | 22 | rehalfcld 9238 | 
. . . . . . . . . . 11
 | 
| 24 | 23 | adantr 276 | 
. . . . . . . . . 10
 | 
| 25 | apdifflemf.qr | 
. . . . . . . . . . . 12
 | |
| 26 | qre 9699 | 
. . . . . . . . . . . . . 14
 | |
| 27 | 3, 26 | syl 14 | 
. . . . . . . . . . . . 13
 | 
| 28 | avglt1 9230 | 
. . . . . . . . . . . . 13
 | |
| 29 | 16, 27, 28 | syl2anc 411 | 
. . . . . . . . . . . 12
 | 
| 30 | 25, 29 | mpbid 147 | 
. . . . . . . . . . 11
 | 
| 31 | 30 | adantr 276 | 
. . . . . . . . . 10
 | 
| 32 | simpr 110 | 
. . . . . . . . . 10
 | |
| 33 | 17, 24, 18, 31, 32 | lttrd 8152 | 
. . . . . . . . 9
 | 
| 34 | 17, 18, 33 | ltled 8145 | 
. . . . . . . 8
 | 
| 35 | 17, 18, 34 | abssubge0d 11341 | 
. . . . . . 7
 | 
| 36 | 35 | oveq2d 5938 | 
. . . . . 6
 | 
| 37 | 5 | adantr 276 | 
. . . . . . 7
 | 
| 38 | 2 | adantr 276 | 
. . . . . . 7
 | 
| 39 | 11 | adantr 276 | 
. . . . . . 7
 | 
| 40 | 37, 38, 39 | subsub3d 8367 | 
. . . . . 6
 | 
| 41 | 37, 39 | addcomd 8177 | 
. . . . . . 7
 | 
| 42 | 41 | oveq1d 5937 | 
. . . . . 6
 | 
| 43 | 36, 40, 42 | 3eqtrd 2233 | 
. . . . 5
 | 
| 44 | 22 | adantr 276 | 
. . . . . . . . 9
 | 
| 45 | 2rp 9733 | 
. . . . . . . . . 10
 | |
| 46 | 45 | a1i 9 | 
. . . . . . . . 9
 | 
| 47 | 44, 18, 46 | ltdivmuld 9823 | 
. . . . . . . 8
 | 
| 48 | 32, 47 | mpbid 147 | 
. . . . . . 7
 | 
| 49 | 38 | 2timesd 9234 | 
. . . . . . 7
 | 
| 50 | 48, 49 | breqtrd 4059 | 
. . . . . 6
 | 
| 51 | 44, 18, 18 | ltsubaddd 8568 | 
. . . . . 6
 | 
| 52 | 50, 51 | mpbird 167 | 
. . . . 5
 | 
| 53 | 43, 52 | eqbrtrd 4055 | 
. . . 4
 | 
| 54 | 25 | adantr 276 | 
. . . . . . 7
 | 
| 55 | 27 | adantr 276 | 
. . . . . . . 8
 | 
| 56 | difrp 9767 | 
. . . . . . . 8
 | |
| 57 | 17, 55, 56 | syl2anc 411 | 
. . . . . . 7
 | 
| 58 | 54, 57 | mpbid 147 | 
. . . . . 6
 | 
| 59 | 18, 58 | ltaddrpd 9805 | 
. . . . 5
 | 
| 60 | 35 | oveq2d 5938 | 
. . . . . 6
 | 
| 61 | 37, 38, 39 | addsub12d 8360 | 
. . . . . 6
 | 
| 62 | 60, 61 | eqtrd 2229 | 
. . . . 5
 | 
| 63 | 59, 62 | breqtrrd 4061 | 
. . . 4
 | 
| 64 | 18, 55, 14 | absdifltd 11343 | 
. . . 4
 | 
| 65 | 53, 63, 64 | mpbir2and 946 | 
. . 3
 | 
| 66 | 8, 14, 65 | gtapd 8664 | 
. 2
 | 
| 67 | 13 | adantr 276 | 
. . 3
 | 
| 68 | 6 | adantr 276 | 
. . . 4
 | 
| 69 | 68 | abscld 11346 | 
. . 3
 | 
| 70 | 11, 5, 2 | subsubd 8365 | 
. . . . . . 7
 | 
| 71 | 16, 27 | sublt0d 8597 | 
. . . . . . . . 9
 | 
| 72 | 25, 71 | mpbird 167 | 
. . . . . . . 8
 | 
| 73 | 16, 27 | resubcld 8407 | 
. . . . . . . . 9
 | 
| 74 | ltaddnegr 8452 | 
. . . . . . . . 9
 | |
| 75 | 73, 1, 74 | syl2anc 411 | 
. . . . . . . 8
 | 
| 76 | 72, 75 | mpbid 147 | 
. . . . . . 7
 | 
| 77 | 70, 76 | eqbrtrd 4055 | 
. . . . . 6
 | 
| 78 | 77 | adantr 276 | 
. . . . 5
 | 
| 79 | 1 | adantr 276 | 
. . . . . . . 8
 | 
| 80 | 22 | adantr 276 | 
. . . . . . . 8
 | 
| 81 | simpr 110 | 
. . . . . . . 8
 | |
| 82 | 79, 79, 80, 81, 81 | lt2halvesd 9239 | 
. . . . . . 7
 | 
| 83 | 79, 79, 80 | ltaddsub2d 8573 | 
. . . . . . 7
 | 
| 84 | 82, 83 | mpbid 147 | 
. . . . . 6
 | 
| 85 | 11 | adantr 276 | 
. . . . . . 7
 | 
| 86 | 5 | adantr 276 | 
. . . . . . 7
 | 
| 87 | 2 | adantr 276 | 
. . . . . . 7
 | 
| 88 | 85, 86, 87 | addsubassd 8357 | 
. . . . . 6
 | 
| 89 | 84, 88 | breqtrd 4059 | 
. . . . 5
 | 
| 90 | 16 | adantr 276 | 
. . . . . 6
 | 
| 91 | 27 | adantr 276 | 
. . . . . . 7
 | 
| 92 | 91, 79 | resubcld 8407 | 
. . . . . 6
 | 
| 93 | 79, 90, 92 | absdifltd 11343 | 
. . . . 5
 | 
| 94 | 78, 89, 93 | mpbir2and 946 | 
. . . 4
 | 
| 95 | 23 | adantr 276 | 
. . . . . . 7
 | 
| 96 | avglt2 9231 | 
. . . . . . . . . 10
 | |
| 97 | 16, 27, 96 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 98 | 25, 97 | mpbid 147 | 
. . . . . . . 8
 | 
| 99 | 98 | adantr 276 | 
. . . . . . 7
 | 
| 100 | 79, 95, 91, 81, 99 | lttrd 8152 | 
. . . . . 6
 | 
| 101 | 79, 91, 100 | ltled 8145 | 
. . . . 5
 | 
| 102 | 79, 91, 101 | abssuble0d 11342 | 
. . . 4
 | 
| 103 | 94, 102 | breqtrrd 4061 | 
. . 3
 | 
| 104 | 67, 69, 103 | ltapd 8665 | 
. 2
 | 
| 105 | apdifflemf.ap | 
. . 3
 | |
| 106 | reaplt 8615 | 
. . . 4
 | |
| 107 | 23, 1, 106 | syl2anc 411 | 
. . 3
 | 
| 108 | 105, 107 | mpbid 147 | 
. 2
 | 
| 109 | 66, 104, 108 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 | 
| This theorem is referenced by: apdiff 15692 | 
| Copyright terms: Public domain | W3C validator |