Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf Unicode version

Theorem apdifflemf 15777
Description: Lemma for apdiff 15779. Being apart from the point halfway between  Q and  R suffices for  A to be a different distance from  Q and from  R. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a  |-  ( ph  ->  A  e.  RR )
apdifflemf.q  |-  ( ph  ->  Q  e.  QQ )
apdifflemf.r  |-  ( ph  ->  R  e.  QQ )
apdifflemf.qr  |-  ( ph  ->  Q  <  R )
apdifflemf.ap  |-  ( ph  ->  ( ( Q  +  R )  /  2
) #  A )
Assertion
Ref Expression
apdifflemf  |-  ( ph  ->  ( abs `  ( A  -  Q )
) #  ( abs `  ( A  -  R )
) )

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21recnd 8072 . . . . . 6  |-  ( ph  ->  A  e.  CC )
3 apdifflemf.r . . . . . . 7  |-  ( ph  ->  R  e.  QQ )
4 qcn 9725 . . . . . . 7  |-  ( R  e.  QQ  ->  R  e.  CC )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  R  e.  CC )
62, 5subcld 8354 . . . . 5  |-  ( ph  ->  ( A  -  R
)  e.  CC )
76adantr 276 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( A  -  R )  e.  CC )
87abscld 11363 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  R ) )  e.  RR )
9 apdifflemf.q . . . . . . 7  |-  ( ph  ->  Q  e.  QQ )
10 qcn 9725 . . . . . . 7  |-  ( Q  e.  QQ  ->  Q  e.  CC )
119, 10syl 14 . . . . . 6  |-  ( ph  ->  Q  e.  CC )
122, 11subcld 8354 . . . . 5  |-  ( ph  ->  ( A  -  Q
)  e.  CC )
1312abscld 11363 . . . 4  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  e.  RR )
1413adantr 276 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) )  e.  RR )
15 qre 9716 . . . . . . . . . 10  |-  ( Q  e.  QQ  ->  Q  e.  RR )
169, 15syl 14 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
1716adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  e.  RR )
181adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  e.  RR )
19 qaddcl 9726 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  QQ  /\  R  e.  QQ )  ->  ( Q  +  R
)  e.  QQ )
209, 3, 19syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q  +  R
)  e.  QQ )
21 qre 9716 . . . . . . . . . . . . 13  |-  ( ( Q  +  R )  e.  QQ  ->  ( Q  +  R )  e.  RR )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  R
)  e.  RR )
2322rehalfcld 9255 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  +  R )  /  2
)  e.  RR )
2423adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  /  2 )  e.  RR )
25 apdifflemf.qr . . . . . . . . . . . 12  |-  ( ph  ->  Q  <  R )
26 qre 9716 . . . . . . . . . . . . . 14  |-  ( R  e.  QQ  ->  R  e.  RR )
273, 26syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  RR )
28 avglt1 9247 . . . . . . . . . . . . 13  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  Q  <  ( ( Q  +  R )  / 
2 ) ) )
2916, 27, 28syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  <  R  <->  Q  <  ( ( Q  +  R )  / 
2 ) ) )
3025, 29mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  Q  <  ( ( Q  +  R )  /  2 ) )
3130adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  ( ( Q  +  R )  /  2
) )
32 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  /  2 )  <  A )
3317, 24, 18, 31, 32lttrd 8169 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  A )
3417, 18, 33ltled 8162 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <_  A )
3517, 18, 34abssubge0d 11358 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) )  =  ( A  -  Q
) )
3635oveq2d 5941 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  =  ( R  -  ( A  -  Q )
) )
375adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  R  e.  CC )
382adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  e.  CC )
3911adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  e.  CC )
4037, 38, 39subsub3d 8384 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( A  -  Q ) )  =  ( ( R  +  Q )  -  A
) )
4137, 39addcomd 8194 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  Q )  =  ( Q  +  R ) )
4241oveq1d 5940 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( R  +  Q
)  -  A )  =  ( ( Q  +  R )  -  A ) )
4336, 40, 423eqtrd 2233 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  =  ( ( Q  +  R )  -  A
) )
4422adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  e.  RR )
45 2rp 9750 . . . . . . . . . 10  |-  2  e.  RR+
4645a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  2  e.  RR+ )
4744, 18, 46ltdivmuld 9840 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( ( Q  +  R )  /  2
)  <  A  <->  ( Q  +  R )  <  (
2  x.  A ) ) )
4832, 47mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  <  ( 2  x.  A
) )
49382timesd 9251 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
2  x.  A )  =  ( A  +  A ) )
5048, 49breqtrd 4060 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  <  ( A  +  A
) )
5144, 18, 18ltsubaddd 8585 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( ( Q  +  R )  -  A
)  <  A  <->  ( Q  +  R )  <  ( A  +  A )
) )
5250, 51mpbird 167 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  -  A )  <  A )
5343, 52eqbrtrd 4056 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  < 
A )
5425adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  R )
5527adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  R  e.  RR )
56 difrp 9784 . . . . . . . 8  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  ( R  -  Q )  e.  RR+ ) )
5717, 55, 56syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  <  R  <->  ( R  -  Q )  e.  RR+ ) )
5854, 57mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  Q )  e.  RR+ )
5918, 58ltaddrpd 9822 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  <  ( A  +  ( R  -  Q ) ) )
6035oveq2d 5941 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( abs `  ( A  -  Q
) ) )  =  ( R  +  ( A  -  Q ) ) )
6137, 38, 39addsub12d 8377 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( A  -  Q ) )  =  ( A  +  ( R  -  Q ) ) )
6260, 61eqtrd 2229 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( abs `  ( A  -  Q
) ) )  =  ( A  +  ( R  -  Q ) ) )
6359, 62breqtrrd 4062 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  <  ( R  +  ( abs `  ( A  -  Q ) ) ) )
6418, 55, 14absdifltd 11360 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( abs `  ( A  -  R )
)  <  ( abs `  ( A  -  Q
) )  <->  ( ( R  -  ( abs `  ( A  -  Q
) ) )  < 
A  /\  A  <  ( R  +  ( abs `  ( A  -  Q
) ) ) ) ) )
6553, 63, 64mpbir2and 946 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  R ) )  < 
( abs `  ( A  -  Q )
) )
668, 14, 65gtapd 8681 . 2  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) ) #  ( abs `  ( A  -  R ) ) )
6713adantr 276 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  e.  RR )
686adantr 276 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( A  -  R )  e.  CC )
6968abscld 11363 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  R
) )  e.  RR )
7011, 5, 2subsubd 8382 . . . . . . 7  |-  ( ph  ->  ( Q  -  ( R  -  A )
)  =  ( ( Q  -  R )  +  A ) )
7116, 27sublt0d 8614 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  -  R )  <  0  <->  Q  <  R ) )
7225, 71mpbird 167 . . . . . . . 8  |-  ( ph  ->  ( Q  -  R
)  <  0 )
7316, 27resubcld 8424 . . . . . . . . 9  |-  ( ph  ->  ( Q  -  R
)  e.  RR )
74 ltaddnegr 8469 . . . . . . . . 9  |-  ( ( ( Q  -  R
)  e.  RR  /\  A  e.  RR )  ->  ( ( Q  -  R )  <  0  <->  ( ( Q  -  R
)  +  A )  <  A ) )
7573, 1, 74syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( Q  -  R )  <  0  <->  ( ( Q  -  R
)  +  A )  <  A ) )
7672, 75mpbid 147 . . . . . . 7  |-  ( ph  ->  ( ( Q  -  R )  +  A
)  <  A )
7770, 76eqbrtrd 4056 . . . . . 6  |-  ( ph  ->  ( Q  -  ( R  -  A )
)  <  A )
7877adantr 276 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( Q  -  ( R  -  A ) )  < 
A )
791adantr 276 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  e.  RR )
8022adantr 276 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( Q  +  R )  e.  RR )
81 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( ( Q  +  R
)  /  2 ) )
8279, 79, 80, 81, 81lt2halvesd 9256 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( A  +  A )  <  ( Q  +  R )
)
8379, 79, 80ltaddsub2d 8590 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( A  +  A )  <  ( Q  +  R
)  <->  A  <  ( ( Q  +  R )  -  A ) ) )
8482, 83mpbid 147 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( ( Q  +  R
)  -  A ) )
8511adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  Q  e.  CC )
865adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  R  e.  CC )
872adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  e.  CC )
8885, 86, 87addsubassd 8374 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  -  A )  =  ( Q  +  ( R  -  A ) ) )
8984, 88breqtrd 4060 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( Q  +  ( R  -  A ) ) )
9016adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  Q  e.  RR )
9127adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  R  e.  RR )
9291, 79resubcld 8424 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( R  -  A )  e.  RR )
9379, 90, 92absdifltd 11360 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( abs `  ( A  -  Q ) )  < 
( R  -  A
)  <->  ( ( Q  -  ( R  -  A ) )  < 
A  /\  A  <  ( Q  +  ( R  -  A ) ) ) ) )
9478, 89, 93mpbir2and 946 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  <  ( R  -  A )
)
9523adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  /  2 )  e.  RR )
96 avglt2 9248 . . . . . . . . . 10  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  ( ( Q  +  R
)  /  2 )  <  R ) )
9716, 27, 96syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( Q  <  R  <->  ( ( Q  +  R
)  /  2 )  <  R ) )
9825, 97mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( ( Q  +  R )  /  2
)  <  R )
9998adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  /  2 )  < 
R )
10079, 95, 91, 81, 99lttrd 8169 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  R )
10179, 91, 100ltled 8162 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <_  R )
10279, 91, 101abssuble0d 11359 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  R
) )  =  ( R  -  A ) )
10394, 102breqtrrd 4062 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  <  ( abs `  ( A  -  R ) ) )
10467, 69, 103ltapd 8682 . 2  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) ) #  ( abs `  ( A  -  R
) ) )
105 apdifflemf.ap . . 3  |-  ( ph  ->  ( ( Q  +  R )  /  2
) #  A )
106 reaplt 8632 . . . 4  |-  ( ( ( ( Q  +  R )  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( ( Q  +  R )  / 
2 ) #  A  <->  ( (
( Q  +  R
)  /  2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2
) ) ) )
10723, 1, 106syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( Q  +  R )  / 
2 ) #  A  <->  ( (
( Q  +  R
)  /  2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2
) ) ) )
108105, 107mpbid 147 . 2  |-  ( ph  ->  ( ( ( Q  +  R )  / 
2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2 ) ) )
10966, 104, 108mpjaodan 799 1  |-  ( ph  ->  ( abs `  ( A  -  Q )
) #  ( abs `  ( A  -  R )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899    x. cmul 7901    < clt 8078    - cmin 8214   # cap 8625    / cdiv 8716   2c2 9058   QQcq 9710   RR+crp 9745   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  apdiff  15779
  Copyright terms: Public domain W3C validator