Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf Unicode version

Theorem apdifflemf 13558
Description: Lemma for apdiff 13560. Being apart from the point halfway between  Q and  R suffices for  A to be a different distance from  Q and from  R. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a  |-  ( ph  ->  A  e.  RR )
apdifflemf.q  |-  ( ph  ->  Q  e.  QQ )
apdifflemf.r  |-  ( ph  ->  R  e.  QQ )
apdifflemf.qr  |-  ( ph  ->  Q  <  R )
apdifflemf.ap  |-  ( ph  ->  ( ( Q  +  R )  /  2
) #  A )
Assertion
Ref Expression
apdifflemf  |-  ( ph  ->  ( abs `  ( A  -  Q )
) #  ( abs `  ( A  -  R )
) )

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21recnd 7885 . . . . . 6  |-  ( ph  ->  A  e.  CC )
3 apdifflemf.r . . . . . . 7  |-  ( ph  ->  R  e.  QQ )
4 qcn 9521 . . . . . . 7  |-  ( R  e.  QQ  ->  R  e.  CC )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  R  e.  CC )
62, 5subcld 8165 . . . . 5  |-  ( ph  ->  ( A  -  R
)  e.  CC )
76adantr 274 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( A  -  R )  e.  CC )
87abscld 11058 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  R ) )  e.  RR )
9 apdifflemf.q . . . . . . 7  |-  ( ph  ->  Q  e.  QQ )
10 qcn 9521 . . . . . . 7  |-  ( Q  e.  QQ  ->  Q  e.  CC )
119, 10syl 14 . . . . . 6  |-  ( ph  ->  Q  e.  CC )
122, 11subcld 8165 . . . . 5  |-  ( ph  ->  ( A  -  Q
)  e.  CC )
1312abscld 11058 . . . 4  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  e.  RR )
1413adantr 274 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) )  e.  RR )
15 qre 9512 . . . . . . . . . 10  |-  ( Q  e.  QQ  ->  Q  e.  RR )
169, 15syl 14 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
1716adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  e.  RR )
181adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  e.  RR )
19 qaddcl 9522 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  QQ  /\  R  e.  QQ )  ->  ( Q  +  R
)  e.  QQ )
209, 3, 19syl2anc 409 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q  +  R
)  e.  QQ )
21 qre 9512 . . . . . . . . . . . . 13  |-  ( ( Q  +  R )  e.  QQ  ->  ( Q  +  R )  e.  RR )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  R
)  e.  RR )
2322rehalfcld 9058 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  +  R )  /  2
)  e.  RR )
2423adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  /  2 )  e.  RR )
25 apdifflemf.qr . . . . . . . . . . . 12  |-  ( ph  ->  Q  <  R )
26 qre 9512 . . . . . . . . . . . . . 14  |-  ( R  e.  QQ  ->  R  e.  RR )
273, 26syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  RR )
28 avglt1 9050 . . . . . . . . . . . . 13  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  Q  <  ( ( Q  +  R )  / 
2 ) ) )
2916, 27, 28syl2anc 409 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  <  R  <->  Q  <  ( ( Q  +  R )  / 
2 ) ) )
3025, 29mpbid 146 . . . . . . . . . . 11  |-  ( ph  ->  Q  <  ( ( Q  +  R )  /  2 ) )
3130adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  ( ( Q  +  R )  /  2
) )
32 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  /  2 )  <  A )
3317, 24, 18, 31, 32lttrd 7980 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  A )
3417, 18, 33ltled 7973 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <_  A )
3517, 18, 34abssubge0d 11053 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) )  =  ( A  -  Q
) )
3635oveq2d 5830 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  =  ( R  -  ( A  -  Q )
) )
375adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  R  e.  CC )
382adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  e.  CC )
3911adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  e.  CC )
4037, 38, 39subsub3d 8195 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( A  -  Q ) )  =  ( ( R  +  Q )  -  A
) )
4137, 39addcomd 8005 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  Q )  =  ( Q  +  R ) )
4241oveq1d 5829 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( R  +  Q
)  -  A )  =  ( ( Q  +  R )  -  A ) )
4336, 40, 423eqtrd 2191 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  =  ( ( Q  +  R )  -  A
) )
4422adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  e.  RR )
45 2rp 9543 . . . . . . . . . 10  |-  2  e.  RR+
4645a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  2  e.  RR+ )
4744, 18, 46ltdivmuld 9633 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( ( Q  +  R )  /  2
)  <  A  <->  ( Q  +  R )  <  (
2  x.  A ) ) )
4832, 47mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  <  ( 2  x.  A
) )
49382timesd 9054 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
2  x.  A )  =  ( A  +  A ) )
5048, 49breqtrd 3986 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  <  ( A  +  A
) )
5144, 18, 18ltsubaddd 8395 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( ( Q  +  R )  -  A
)  <  A  <->  ( Q  +  R )  <  ( A  +  A )
) )
5250, 51mpbird 166 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  -  A )  <  A )
5343, 52eqbrtrd 3982 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  < 
A )
5425adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  R )
5527adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  R  e.  RR )
56 difrp 9577 . . . . . . . 8  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  ( R  -  Q )  e.  RR+ ) )
5717, 55, 56syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  <  R  <->  ( R  -  Q )  e.  RR+ ) )
5854, 57mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  Q )  e.  RR+ )
5918, 58ltaddrpd 9615 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  <  ( A  +  ( R  -  Q ) ) )
6035oveq2d 5830 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( abs `  ( A  -  Q
) ) )  =  ( R  +  ( A  -  Q ) ) )
6137, 38, 39addsub12d 8188 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( A  -  Q ) )  =  ( A  +  ( R  -  Q ) ) )
6260, 61eqtrd 2187 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( abs `  ( A  -  Q
) ) )  =  ( A  +  ( R  -  Q ) ) )
6359, 62breqtrrd 3988 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  <  ( R  +  ( abs `  ( A  -  Q ) ) ) )
6418, 55, 14absdifltd 11055 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( abs `  ( A  -  R )
)  <  ( abs `  ( A  -  Q
) )  <->  ( ( R  -  ( abs `  ( A  -  Q
) ) )  < 
A  /\  A  <  ( R  +  ( abs `  ( A  -  Q
) ) ) ) ) )
6553, 63, 64mpbir2and 929 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  R ) )  < 
( abs `  ( A  -  Q )
) )
668, 14, 65gtapd 8491 . 2  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) ) #  ( abs `  ( A  -  R ) ) )
6713adantr 274 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  e.  RR )
686adantr 274 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( A  -  R )  e.  CC )
6968abscld 11058 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  R
) )  e.  RR )
7011, 5, 2subsubd 8193 . . . . . . 7  |-  ( ph  ->  ( Q  -  ( R  -  A )
)  =  ( ( Q  -  R )  +  A ) )
7116, 27sublt0d 8424 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  -  R )  <  0  <->  Q  <  R ) )
7225, 71mpbird 166 . . . . . . . 8  |-  ( ph  ->  ( Q  -  R
)  <  0 )
7316, 27resubcld 8235 . . . . . . . . 9  |-  ( ph  ->  ( Q  -  R
)  e.  RR )
74 ltaddnegr 8279 . . . . . . . . 9  |-  ( ( ( Q  -  R
)  e.  RR  /\  A  e.  RR )  ->  ( ( Q  -  R )  <  0  <->  ( ( Q  -  R
)  +  A )  <  A ) )
7573, 1, 74syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( ( Q  -  R )  <  0  <->  ( ( Q  -  R
)  +  A )  <  A ) )
7672, 75mpbid 146 . . . . . . 7  |-  ( ph  ->  ( ( Q  -  R )  +  A
)  <  A )
7770, 76eqbrtrd 3982 . . . . . 6  |-  ( ph  ->  ( Q  -  ( R  -  A )
)  <  A )
7877adantr 274 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( Q  -  ( R  -  A ) )  < 
A )
791adantr 274 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  e.  RR )
8022adantr 274 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( Q  +  R )  e.  RR )
81 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( ( Q  +  R
)  /  2 ) )
8279, 79, 80, 81, 81lt2halvesd 9059 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( A  +  A )  <  ( Q  +  R )
)
8379, 79, 80ltaddsub2d 8400 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( A  +  A )  <  ( Q  +  R
)  <->  A  <  ( ( Q  +  R )  -  A ) ) )
8482, 83mpbid 146 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( ( Q  +  R
)  -  A ) )
8511adantr 274 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  Q  e.  CC )
865adantr 274 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  R  e.  CC )
872adantr 274 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  e.  CC )
8885, 86, 87addsubassd 8185 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  -  A )  =  ( Q  +  ( R  -  A ) ) )
8984, 88breqtrd 3986 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( Q  +  ( R  -  A ) ) )
9016adantr 274 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  Q  e.  RR )
9127adantr 274 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  R  e.  RR )
9291, 79resubcld 8235 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( R  -  A )  e.  RR )
9379, 90, 92absdifltd 11055 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( abs `  ( A  -  Q ) )  < 
( R  -  A
)  <->  ( ( Q  -  ( R  -  A ) )  < 
A  /\  A  <  ( Q  +  ( R  -  A ) ) ) ) )
9478, 89, 93mpbir2and 929 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  <  ( R  -  A )
)
9523adantr 274 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  /  2 )  e.  RR )
96 avglt2 9051 . . . . . . . . . 10  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  ( ( Q  +  R
)  /  2 )  <  R ) )
9716, 27, 96syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( Q  <  R  <->  ( ( Q  +  R
)  /  2 )  <  R ) )
9825, 97mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( ( Q  +  R )  /  2
)  <  R )
9998adantr 274 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  /  2 )  < 
R )
10079, 95, 91, 81, 99lttrd 7980 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  R )
10179, 91, 100ltled 7973 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <_  R )
10279, 91, 101abssuble0d 11054 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  R
) )  =  ( R  -  A ) )
10394, 102breqtrrd 3988 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  <  ( abs `  ( A  -  R ) ) )
10467, 69, 103ltapd 8492 . 2  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) ) #  ( abs `  ( A  -  R
) ) )
105 apdifflemf.ap . . 3  |-  ( ph  ->  ( ( Q  +  R )  /  2
) #  A )
106 reaplt 8442 . . . 4  |-  ( ( ( ( Q  +  R )  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( ( Q  +  R )  / 
2 ) #  A  <->  ( (
( Q  +  R
)  /  2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2
) ) ) )
10723, 1, 106syl2anc 409 . . 3  |-  ( ph  ->  ( ( ( Q  +  R )  / 
2 ) #  A  <->  ( (
( Q  +  R
)  /  2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2
) ) ) )
108105, 107mpbid 146 . 2  |-  ( ph  ->  ( ( ( Q  +  R )  / 
2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2 ) ) )
10966, 104, 108mpjaodan 788 1  |-  ( ph  ->  ( abs `  ( A  -  Q )
) #  ( abs `  ( A  -  R )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    e. wcel 2125   class class class wbr 3961   ` cfv 5163  (class class class)co 5814   CCcc 7709   RRcr 7710   0cc0 7711    + caddc 7714    x. cmul 7716    < clt 7891    - cmin 8025   # cap 8435    / cdiv 8524   2c2 8863   QQcq 9506   RR+crp 9538   abscabs 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876
This theorem is referenced by:  apdiff  13560
  Copyright terms: Public domain W3C validator