| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > apdifflemf | Unicode version | ||
| Description: Lemma for apdiff 16347. Being apart from the point halfway between
|
| Ref | Expression |
|---|---|
| apdifflemf.a |
|
| apdifflemf.q |
|
| apdifflemf.r |
|
| apdifflemf.qr |
|
| apdifflemf.ap |
|
| Ref | Expression |
|---|---|
| apdifflemf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | apdifflemf.a |
. . . . . . 7
| |
| 2 | 1 | recnd 8163 |
. . . . . 6
|
| 3 | apdifflemf.r |
. . . . . . 7
| |
| 4 | qcn 9817 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 2, 5 | subcld 8445 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | 7 | abscld 11678 |
. . 3
|
| 9 | apdifflemf.q |
. . . . . . 7
| |
| 10 | qcn 9817 |
. . . . . . 7
| |
| 11 | 9, 10 | syl 14 |
. . . . . 6
|
| 12 | 2, 11 | subcld 8445 |
. . . . 5
|
| 13 | 12 | abscld 11678 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | qre 9808 |
. . . . . . . . . 10
| |
| 16 | 9, 15 | syl 14 |
. . . . . . . . 9
|
| 17 | 16 | adantr 276 |
. . . . . . . 8
|
| 18 | 1 | adantr 276 |
. . . . . . . 8
|
| 19 | qaddcl 9818 |
. . . . . . . . . . . . . 14
| |
| 20 | 9, 3, 19 | syl2anc 411 |
. . . . . . . . . . . . 13
|
| 21 | qre 9808 |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . . . . . 12
|
| 23 | 22 | rehalfcld 9346 |
. . . . . . . . . . 11
|
| 24 | 23 | adantr 276 |
. . . . . . . . . 10
|
| 25 | apdifflemf.qr |
. . . . . . . . . . . 12
| |
| 26 | qre 9808 |
. . . . . . . . . . . . . 14
| |
| 27 | 3, 26 | syl 14 |
. . . . . . . . . . . . 13
|
| 28 | avglt1 9338 |
. . . . . . . . . . . . 13
| |
| 29 | 16, 27, 28 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 30 | 25, 29 | mpbid 147 |
. . . . . . . . . . 11
|
| 31 | 30 | adantr 276 |
. . . . . . . . . 10
|
| 32 | simpr 110 |
. . . . . . . . . 10
| |
| 33 | 17, 24, 18, 31, 32 | lttrd 8260 |
. . . . . . . . 9
|
| 34 | 17, 18, 33 | ltled 8253 |
. . . . . . . 8
|
| 35 | 17, 18, 34 | abssubge0d 11673 |
. . . . . . 7
|
| 36 | 35 | oveq2d 6010 |
. . . . . 6
|
| 37 | 5 | adantr 276 |
. . . . . . 7
|
| 38 | 2 | adantr 276 |
. . . . . . 7
|
| 39 | 11 | adantr 276 |
. . . . . . 7
|
| 40 | 37, 38, 39 | subsub3d 8475 |
. . . . . 6
|
| 41 | 37, 39 | addcomd 8285 |
. . . . . . 7
|
| 42 | 41 | oveq1d 6009 |
. . . . . 6
|
| 43 | 36, 40, 42 | 3eqtrd 2266 |
. . . . 5
|
| 44 | 22 | adantr 276 |
. . . . . . . . 9
|
| 45 | 2rp 9842 |
. . . . . . . . . 10
| |
| 46 | 45 | a1i 9 |
. . . . . . . . 9
|
| 47 | 44, 18, 46 | ltdivmuld 9932 |
. . . . . . . 8
|
| 48 | 32, 47 | mpbid 147 |
. . . . . . 7
|
| 49 | 38 | 2timesd 9342 |
. . . . . . 7
|
| 50 | 48, 49 | breqtrd 4108 |
. . . . . 6
|
| 51 | 44, 18, 18 | ltsubaddd 8676 |
. . . . . 6
|
| 52 | 50, 51 | mpbird 167 |
. . . . 5
|
| 53 | 43, 52 | eqbrtrd 4104 |
. . . 4
|
| 54 | 25 | adantr 276 |
. . . . . . 7
|
| 55 | 27 | adantr 276 |
. . . . . . . 8
|
| 56 | difrp 9876 |
. . . . . . . 8
| |
| 57 | 17, 55, 56 | syl2anc 411 |
. . . . . . 7
|
| 58 | 54, 57 | mpbid 147 |
. . . . . 6
|
| 59 | 18, 58 | ltaddrpd 9914 |
. . . . 5
|
| 60 | 35 | oveq2d 6010 |
. . . . . 6
|
| 61 | 37, 38, 39 | addsub12d 8468 |
. . . . . 6
|
| 62 | 60, 61 | eqtrd 2262 |
. . . . 5
|
| 63 | 59, 62 | breqtrrd 4110 |
. . . 4
|
| 64 | 18, 55, 14 | absdifltd 11675 |
. . . 4
|
| 65 | 53, 63, 64 | mpbir2and 950 |
. . 3
|
| 66 | 8, 14, 65 | gtapd 8772 |
. 2
|
| 67 | 13 | adantr 276 |
. . 3
|
| 68 | 6 | adantr 276 |
. . . 4
|
| 69 | 68 | abscld 11678 |
. . 3
|
| 70 | 11, 5, 2 | subsubd 8473 |
. . . . . . 7
|
| 71 | 16, 27 | sublt0d 8705 |
. . . . . . . . 9
|
| 72 | 25, 71 | mpbird 167 |
. . . . . . . 8
|
| 73 | 16, 27 | resubcld 8515 |
. . . . . . . . 9
|
| 74 | ltaddnegr 8560 |
. . . . . . . . 9
| |
| 75 | 73, 1, 74 | syl2anc 411 |
. . . . . . . 8
|
| 76 | 72, 75 | mpbid 147 |
. . . . . . 7
|
| 77 | 70, 76 | eqbrtrd 4104 |
. . . . . 6
|
| 78 | 77 | adantr 276 |
. . . . 5
|
| 79 | 1 | adantr 276 |
. . . . . . . 8
|
| 80 | 22 | adantr 276 |
. . . . . . . 8
|
| 81 | simpr 110 |
. . . . . . . 8
| |
| 82 | 79, 79, 80, 81, 81 | lt2halvesd 9347 |
. . . . . . 7
|
| 83 | 79, 79, 80 | ltaddsub2d 8681 |
. . . . . . 7
|
| 84 | 82, 83 | mpbid 147 |
. . . . . 6
|
| 85 | 11 | adantr 276 |
. . . . . . 7
|
| 86 | 5 | adantr 276 |
. . . . . . 7
|
| 87 | 2 | adantr 276 |
. . . . . . 7
|
| 88 | 85, 86, 87 | addsubassd 8465 |
. . . . . 6
|
| 89 | 84, 88 | breqtrd 4108 |
. . . . 5
|
| 90 | 16 | adantr 276 |
. . . . . 6
|
| 91 | 27 | adantr 276 |
. . . . . . 7
|
| 92 | 91, 79 | resubcld 8515 |
. . . . . 6
|
| 93 | 79, 90, 92 | absdifltd 11675 |
. . . . 5
|
| 94 | 78, 89, 93 | mpbir2and 950 |
. . . 4
|
| 95 | 23 | adantr 276 |
. . . . . . 7
|
| 96 | avglt2 9339 |
. . . . . . . . . 10
| |
| 97 | 16, 27, 96 | syl2anc 411 |
. . . . . . . . 9
|
| 98 | 25, 97 | mpbid 147 |
. . . . . . . 8
|
| 99 | 98 | adantr 276 |
. . . . . . 7
|
| 100 | 79, 95, 91, 81, 99 | lttrd 8260 |
. . . . . 6
|
| 101 | 79, 91, 100 | ltled 8253 |
. . . . 5
|
| 102 | 79, 91, 101 | abssuble0d 11674 |
. . . 4
|
| 103 | 94, 102 | breqtrrd 4110 |
. . 3
|
| 104 | 67, 69, 103 | ltapd 8773 |
. 2
|
| 105 | apdifflemf.ap |
. . 3
| |
| 106 | reaplt 8723 |
. . . 4
| |
| 107 | 23, 1, 106 | syl2anc 411 |
. . 3
|
| 108 | 105, 107 | mpbid 147 |
. 2
|
| 109 | 66, 104, 108 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 |
| This theorem is referenced by: apdiff 16347 |
| Copyright terms: Public domain | W3C validator |