Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf Unicode version

Theorem apdifflemf 15273
Description: Lemma for apdiff 15275. Being apart from the point halfway between  Q and  R suffices for  A to be a different distance from  Q and from  R. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a  |-  ( ph  ->  A  e.  RR )
apdifflemf.q  |-  ( ph  ->  Q  e.  QQ )
apdifflemf.r  |-  ( ph  ->  R  e.  QQ )
apdifflemf.qr  |-  ( ph  ->  Q  <  R )
apdifflemf.ap  |-  ( ph  ->  ( ( Q  +  R )  /  2
) #  A )
Assertion
Ref Expression
apdifflemf  |-  ( ph  ->  ( abs `  ( A  -  Q )
) #  ( abs `  ( A  -  R )
) )

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21recnd 8017 . . . . . 6  |-  ( ph  ->  A  e.  CC )
3 apdifflemf.r . . . . . . 7  |-  ( ph  ->  R  e.  QQ )
4 qcn 9666 . . . . . . 7  |-  ( R  e.  QQ  ->  R  e.  CC )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  R  e.  CC )
62, 5subcld 8299 . . . . 5  |-  ( ph  ->  ( A  -  R
)  e.  CC )
76adantr 276 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( A  -  R )  e.  CC )
87abscld 11225 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  R ) )  e.  RR )
9 apdifflemf.q . . . . . . 7  |-  ( ph  ->  Q  e.  QQ )
10 qcn 9666 . . . . . . 7  |-  ( Q  e.  QQ  ->  Q  e.  CC )
119, 10syl 14 . . . . . 6  |-  ( ph  ->  Q  e.  CC )
122, 11subcld 8299 . . . . 5  |-  ( ph  ->  ( A  -  Q
)  e.  CC )
1312abscld 11225 . . . 4  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  e.  RR )
1413adantr 276 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) )  e.  RR )
15 qre 9657 . . . . . . . . . 10  |-  ( Q  e.  QQ  ->  Q  e.  RR )
169, 15syl 14 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
1716adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  e.  RR )
181adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  e.  RR )
19 qaddcl 9667 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  QQ  /\  R  e.  QQ )  ->  ( Q  +  R
)  e.  QQ )
209, 3, 19syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q  +  R
)  e.  QQ )
21 qre 9657 . . . . . . . . . . . . 13  |-  ( ( Q  +  R )  e.  QQ  ->  ( Q  +  R )  e.  RR )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  R
)  e.  RR )
2322rehalfcld 9196 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  +  R )  /  2
)  e.  RR )
2423adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  /  2 )  e.  RR )
25 apdifflemf.qr . . . . . . . . . . . 12  |-  ( ph  ->  Q  <  R )
26 qre 9657 . . . . . . . . . . . . . 14  |-  ( R  e.  QQ  ->  R  e.  RR )
273, 26syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  RR )
28 avglt1 9188 . . . . . . . . . . . . 13  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  Q  <  ( ( Q  +  R )  / 
2 ) ) )
2916, 27, 28syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  <  R  <->  Q  <  ( ( Q  +  R )  / 
2 ) ) )
3025, 29mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  Q  <  ( ( Q  +  R )  /  2 ) )
3130adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  ( ( Q  +  R )  /  2
) )
32 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  /  2 )  <  A )
3317, 24, 18, 31, 32lttrd 8114 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  A )
3417, 18, 33ltled 8107 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <_  A )
3517, 18, 34abssubge0d 11220 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) )  =  ( A  -  Q
) )
3635oveq2d 5913 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  =  ( R  -  ( A  -  Q )
) )
375adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  R  e.  CC )
382adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  e.  CC )
3911adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  e.  CC )
4037, 38, 39subsub3d 8329 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( A  -  Q ) )  =  ( ( R  +  Q )  -  A
) )
4137, 39addcomd 8139 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  Q )  =  ( Q  +  R ) )
4241oveq1d 5912 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( R  +  Q
)  -  A )  =  ( ( Q  +  R )  -  A ) )
4336, 40, 423eqtrd 2226 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  =  ( ( Q  +  R )  -  A
) )
4422adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  e.  RR )
45 2rp 9690 . . . . . . . . . 10  |-  2  e.  RR+
4645a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  2  e.  RR+ )
4744, 18, 46ltdivmuld 9780 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( ( Q  +  R )  /  2
)  <  A  <->  ( Q  +  R )  <  (
2  x.  A ) ) )
4832, 47mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  <  ( 2  x.  A
) )
49382timesd 9192 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
2  x.  A )  =  ( A  +  A ) )
5048, 49breqtrd 4044 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  +  R )  <  ( A  +  A
) )
5144, 18, 18ltsubaddd 8529 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( ( Q  +  R )  -  A
)  <  A  <->  ( Q  +  R )  <  ( A  +  A )
) )
5250, 51mpbird 167 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( Q  +  R
)  -  A )  <  A )
5343, 52eqbrtrd 4040 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  ( abs `  ( A  -  Q
) ) )  < 
A )
5425adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  Q  <  R )
5527adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  R  e.  RR )
56 difrp 9724 . . . . . . . 8  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  ( R  -  Q )  e.  RR+ ) )
5717, 55, 56syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( Q  <  R  <->  ( R  -  Q )  e.  RR+ ) )
5854, 57mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  -  Q )  e.  RR+ )
5918, 58ltaddrpd 9762 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  <  ( A  +  ( R  -  Q ) ) )
6035oveq2d 5913 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( abs `  ( A  -  Q
) ) )  =  ( R  +  ( A  -  Q ) ) )
6137, 38, 39addsub12d 8322 . . . . . 6  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( A  -  Q ) )  =  ( A  +  ( R  -  Q ) ) )
6260, 61eqtrd 2222 . . . . 5  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( R  +  ( abs `  ( A  -  Q
) ) )  =  ( A  +  ( R  -  Q ) ) )
6359, 62breqtrrd 4046 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  A  <  ( R  +  ( abs `  ( A  -  Q ) ) ) )
6418, 55, 14absdifltd 11222 . . . 4  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  (
( abs `  ( A  -  R )
)  <  ( abs `  ( A  -  Q
) )  <->  ( ( R  -  ( abs `  ( A  -  Q
) ) )  < 
A  /\  A  <  ( R  +  ( abs `  ( A  -  Q
) ) ) ) ) )
6553, 63, 64mpbir2and 946 . . 3  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  R ) )  < 
( abs `  ( A  -  Q )
) )
668, 14, 65gtapd 8625 . 2  |-  ( (
ph  /\  ( ( Q  +  R )  /  2 )  < 
A )  ->  ( abs `  ( A  -  Q ) ) #  ( abs `  ( A  -  R ) ) )
6713adantr 276 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  e.  RR )
686adantr 276 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( A  -  R )  e.  CC )
6968abscld 11225 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  R
) )  e.  RR )
7011, 5, 2subsubd 8327 . . . . . . 7  |-  ( ph  ->  ( Q  -  ( R  -  A )
)  =  ( ( Q  -  R )  +  A ) )
7116, 27sublt0d 8558 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  -  R )  <  0  <->  Q  <  R ) )
7225, 71mpbird 167 . . . . . . . 8  |-  ( ph  ->  ( Q  -  R
)  <  0 )
7316, 27resubcld 8369 . . . . . . . . 9  |-  ( ph  ->  ( Q  -  R
)  e.  RR )
74 ltaddnegr 8413 . . . . . . . . 9  |-  ( ( ( Q  -  R
)  e.  RR  /\  A  e.  RR )  ->  ( ( Q  -  R )  <  0  <->  ( ( Q  -  R
)  +  A )  <  A ) )
7573, 1, 74syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( Q  -  R )  <  0  <->  ( ( Q  -  R
)  +  A )  <  A ) )
7672, 75mpbid 147 . . . . . . 7  |-  ( ph  ->  ( ( Q  -  R )  +  A
)  <  A )
7770, 76eqbrtrd 4040 . . . . . 6  |-  ( ph  ->  ( Q  -  ( R  -  A )
)  <  A )
7877adantr 276 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( Q  -  ( R  -  A ) )  < 
A )
791adantr 276 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  e.  RR )
8022adantr 276 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( Q  +  R )  e.  RR )
81 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( ( Q  +  R
)  /  2 ) )
8279, 79, 80, 81, 81lt2halvesd 9197 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( A  +  A )  <  ( Q  +  R )
)
8379, 79, 80ltaddsub2d 8534 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( A  +  A )  <  ( Q  +  R
)  <->  A  <  ( ( Q  +  R )  -  A ) ) )
8482, 83mpbid 147 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( ( Q  +  R
)  -  A ) )
8511adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  Q  e.  CC )
865adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  R  e.  CC )
872adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  e.  CC )
8885, 86, 87addsubassd 8319 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  -  A )  =  ( Q  +  ( R  -  A ) ) )
8984, 88breqtrd 4044 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  ( Q  +  ( R  -  A ) ) )
9016adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  Q  e.  RR )
9127adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  R  e.  RR )
9291, 79resubcld 8369 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( R  -  A )  e.  RR )
9379, 90, 92absdifltd 11222 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( abs `  ( A  -  Q ) )  < 
( R  -  A
)  <->  ( ( Q  -  ( R  -  A ) )  < 
A  /\  A  <  ( Q  +  ( R  -  A ) ) ) ) )
9478, 89, 93mpbir2and 946 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  <  ( R  -  A )
)
9523adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  /  2 )  e.  RR )
96 avglt2 9189 . . . . . . . . . 10  |-  ( ( Q  e.  RR  /\  R  e.  RR )  ->  ( Q  <  R  <->  ( ( Q  +  R
)  /  2 )  <  R ) )
9716, 27, 96syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( Q  <  R  <->  ( ( Q  +  R
)  /  2 )  <  R ) )
9825, 97mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( ( Q  +  R )  /  2
)  <  R )
9998adantr 276 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( ( Q  +  R )  /  2 )  < 
R )
10079, 95, 91, 81, 99lttrd 8114 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <  R )
10179, 91, 100ltled 8107 . . . . 5  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  A  <_  R )
10279, 91, 101abssuble0d 11221 . . . 4  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  R
) )  =  ( R  -  A ) )
10394, 102breqtrrd 4046 . . 3  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) )  <  ( abs `  ( A  -  R ) ) )
10467, 69, 103ltapd 8626 . 2  |-  ( (
ph  /\  A  <  ( ( Q  +  R
)  /  2 ) )  ->  ( abs `  ( A  -  Q
) ) #  ( abs `  ( A  -  R
) ) )
105 apdifflemf.ap . . 3  |-  ( ph  ->  ( ( Q  +  R )  /  2
) #  A )
106 reaplt 8576 . . . 4  |-  ( ( ( ( Q  +  R )  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( ( Q  +  R )  / 
2 ) #  A  <->  ( (
( Q  +  R
)  /  2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2
) ) ) )
10723, 1, 106syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( Q  +  R )  / 
2 ) #  A  <->  ( (
( Q  +  R
)  /  2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2
) ) ) )
108105, 107mpbid 147 . 2  |-  ( ph  ->  ( ( ( Q  +  R )  / 
2 )  <  A  \/  A  <  ( ( Q  +  R )  /  2 ) ) )
10966, 104, 108mpjaodan 799 1  |-  ( ph  ->  ( abs `  ( A  -  Q )
) #  ( abs `  ( A  -  R )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2160   class class class wbr 4018   ` cfv 5235  (class class class)co 5897   CCcc 7840   RRcr 7841   0cc0 7842    + caddc 7845    x. cmul 7847    < clt 8023    - cmin 8159   # cap 8569    / cdiv 8660   2c2 9001   QQcq 9651   RR+crp 9685   abscabs 11041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043
This theorem is referenced by:  apdiff  15275
  Copyright terms: Public domain W3C validator