Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltexprlemell | GIF version |
Description: Element in lower cut of the constructed difference. Lemma for ltexpri 7554. (Contributed by Jim Kingdon, 21-Dec-2019.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 |
Ref | Expression |
---|---|
ltexprlemell | ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑞)) | |
2 | 1 | eleq1d 2235 | . . . 4 ⊢ (𝑥 = 𝑞 → ((𝑦 +Q 𝑥) ∈ (1st ‘𝐵) ↔ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵))) |
3 | 2 | anbi2d 460 | . . 3 ⊢ (𝑥 = 𝑞 → ((𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵)) ↔ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
4 | 3 | exbidv 1813 | . 2 ⊢ (𝑥 = 𝑞 → (∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵)) ↔ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
5 | ltexprlem.1 | . . . 4 ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 | |
6 | 5 | fveq2i 5489 | . . 3 ⊢ (1st ‘𝐶) = (1st ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) |
7 | nqex 7304 | . . . . 5 ⊢ Q ∈ V | |
8 | 7 | rabex 4126 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ V |
9 | 7 | rabex 4126 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ V |
10 | 8, 9 | op1st 6114 | . . 3 ⊢ (1st ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} |
11 | 6, 10 | eqtri 2186 | . 2 ⊢ (1st ‘𝐶) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} |
12 | 4, 11 | elrab2 2885 | 1 ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {crab 2448 〈cop 3579 ‘cfv 5188 (class class class)co 5842 1st c1st 6106 2nd c2nd 6107 Qcnq 7221 +Q cplq 7223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-1st 6108 df-qs 6507 df-ni 7245 df-nqqs 7289 |
This theorem is referenced by: ltexprlemm 7541 ltexprlemopl 7542 ltexprlemlol 7543 ltexprlemdisj 7547 ltexprlemloc 7548 ltexprlemfl 7550 ltexprlemrl 7551 |
Copyright terms: Public domain | W3C validator |