Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltexprlemell | GIF version |
Description: Element in lower cut of the constructed difference. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 |
Ref | Expression |
---|---|
ltexprlemell | ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑞)) | |
2 | 1 | eleq1d 2239 | . . . 4 ⊢ (𝑥 = 𝑞 → ((𝑦 +Q 𝑥) ∈ (1st ‘𝐵) ↔ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵))) |
3 | 2 | anbi2d 461 | . . 3 ⊢ (𝑥 = 𝑞 → ((𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵)) ↔ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
4 | 3 | exbidv 1818 | . 2 ⊢ (𝑥 = 𝑞 → (∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵)) ↔ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
5 | ltexprlem.1 | . . . 4 ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 | |
6 | 5 | fveq2i 5499 | . . 3 ⊢ (1st ‘𝐶) = (1st ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) |
7 | nqex 7325 | . . . . 5 ⊢ Q ∈ V | |
8 | 7 | rabex 4133 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ V |
9 | 7 | rabex 4133 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ V |
10 | 8, 9 | op1st 6125 | . . 3 ⊢ (1st ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} |
11 | 6, 10 | eqtri 2191 | . 2 ⊢ (1st ‘𝐶) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} |
12 | 4, 11 | elrab2 2889 | 1 ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 {crab 2452 〈cop 3586 ‘cfv 5198 (class class class)co 5853 1st c1st 6117 2nd c2nd 6118 Qcnq 7242 +Q cplq 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-1st 6119 df-qs 6519 df-ni 7266 df-nqqs 7310 |
This theorem is referenced by: ltexprlemm 7562 ltexprlemopl 7563 ltexprlemlol 7564 ltexprlemdisj 7568 ltexprlemloc 7569 ltexprlemfl 7571 ltexprlemrl 7572 |
Copyright terms: Public domain | W3C validator |