Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltexprlemell | GIF version |
Description: Element in lower cut of the constructed difference. Lemma for ltexpri 7562. (Contributed by Jim Kingdon, 21-Dec-2019.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 |
Ref | Expression |
---|---|
ltexprlemell | ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5858 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑞)) | |
2 | 1 | eleq1d 2239 | . . . 4 ⊢ (𝑥 = 𝑞 → ((𝑦 +Q 𝑥) ∈ (1st ‘𝐵) ↔ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵))) |
3 | 2 | anbi2d 461 | . . 3 ⊢ (𝑥 = 𝑞 → ((𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵)) ↔ (𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
4 | 3 | exbidv 1818 | . 2 ⊢ (𝑥 = 𝑞 → (∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵)) ↔ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
5 | ltexprlem.1 | . . . 4 ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 | |
6 | 5 | fveq2i 5497 | . . 3 ⊢ (1st ‘𝐶) = (1st ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) |
7 | nqex 7312 | . . . . 5 ⊢ Q ∈ V | |
8 | 7 | rabex 4131 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ V |
9 | 7 | rabex 4131 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ V |
10 | 8, 9 | op1st 6122 | . . 3 ⊢ (1st ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} |
11 | 6, 10 | eqtri 2191 | . 2 ⊢ (1st ‘𝐶) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} |
12 | 4, 11 | elrab2 2889 | 1 ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 {crab 2452 〈cop 3584 ‘cfv 5196 (class class class)co 5850 1st c1st 6114 2nd c2nd 6115 Qcnq 7229 +Q cplq 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-1st 6116 df-qs 6515 df-ni 7253 df-nqqs 7297 |
This theorem is referenced by: ltexprlemm 7549 ltexprlemopl 7550 ltexprlemlol 7551 ltexprlemdisj 7555 ltexprlemloc 7556 ltexprlemfl 7558 ltexprlemrl 7559 |
Copyright terms: Public domain | W3C validator |