ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0cld Unicode version

Theorem mulgnn0cld 13688
Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13683. (Contributed by SN, 1-Feb-2025.)
Hypotheses
Ref Expression
mulgnn0cld.b  |-  B  =  ( Base `  G
)
mulgnn0cld.t  |-  .x.  =  (.g
`  G )
mulgnn0cld.m  |-  ( ph  ->  G  e.  Mnd )
mulgnn0cld.n  |-  ( ph  ->  N  e.  NN0 )
mulgnn0cld.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
mulgnn0cld  |-  ( ph  ->  ( N  .x.  X
)  e.  B )

Proof of Theorem mulgnn0cld
StepHypRef Expression
1 mulgnn0cld.m . 2  |-  ( ph  ->  G  e.  Mnd )
2 mulgnn0cld.n . 2  |-  ( ph  ->  N  e.  NN0 )
3 mulgnn0cld.x . 2  |-  ( ph  ->  X  e.  B )
4 mulgnn0cld.b . . 3  |-  B  =  ( Base `  G
)
5 mulgnn0cld.t . . 3  |-  .x.  =  (.g
`  G )
64, 5mulgnn0cl 13683 . 2  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
71, 2, 3, 6syl3anc 1271 1  |-  ( ph  ->  ( N  .x.  X
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6007   NN0cn0 9377   Basecbs 13040   Mndcmnd 13457  .gcmg 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-minusg 13545  df-mulg 13665
This theorem is referenced by:  lmodvsmmulgdi  14295
  Copyright terms: Public domain W3C validator