Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid1d | Unicode version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
Ref | Expression |
---|---|
mulid1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 | |
2 | mulid1 7858 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 (class class class)co 5818 cc 7713 c1 7716 cmul 7720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-mulcl 7813 ax-mulcom 7816 ax-mulass 7818 ax-distr 7819 ax-1rid 7822 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 |
This theorem is referenced by: muladd11 7991 ltmul1 8450 mulap0 8511 divrecap 8544 diveqap1 8561 conjmulap 8585 apmul1 8644 qapne 9530 divelunit 9888 modqid 10230 q2submod 10266 addmodlteq 10279 expadd 10443 leexp2r 10455 nnlesq 10504 sqoddm1div8 10553 nn0opthlem1d 10576 faclbnd 10597 faclbnd2 10598 faclbnd6 10600 facavg 10602 bcn0 10611 bcn1 10614 reccn2ap 11192 hash2iun1dif1 11359 binom11 11365 trireciplem 11379 geosergap 11385 cvgratnnlemnexp 11403 cvgratnnlemmn 11404 fprodsplitdc 11475 efzval 11562 tanaddaplem 11617 tanaddap 11618 cos01gt0 11641 absef 11648 1dvds 11682 bezoutlema 11863 bezoutlemb 11864 gcdmultiple 11884 sqgcd 11893 lcm1 11938 coprmdvds 11949 qredeu 11954 phiprmpw 12074 dveflem 13047 efper 13088 tangtx 13119 logdivlti 13162 relogbexpap 13235 rplogbcxp 13240 trilpolemclim 13569 trilpolemisumle 13571 trilpolemeq1 13573 trilpolemlt1 13574 redcwlpolemeq1 13587 nconstwlpolemgt0 13596 |
Copyright terms: Public domain | W3C validator |