ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullt0 GIF version

Theorem mullt0 8399
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.)
Assertion
Ref Expression
mullt0 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))

Proof of Theorem mullt0
StepHypRef Expression
1 renegcl 8180 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
21adantr 274 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
3 lt0neg1 8387 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
43biimpa 294 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴)
52, 4jca 304 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
6 renegcl 8180 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
76adantr 274 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → -𝐵 ∈ ℝ)
8 lt0neg1 8387 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 0 ↔ 0 < -𝐵))
98biimpa 294 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → 0 < -𝐵)
107, 9jca 304 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → (-𝐵 ∈ ℝ ∧ 0 < -𝐵))
11 mulgt0 7994 . . 3 (((-𝐴 ∈ ℝ ∧ 0 < -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → 0 < (-𝐴 · -𝐵))
125, 10, 11syl2an 287 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (-𝐴 · -𝐵))
13 recn 7907 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 recn 7907 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 mul2neg 8317 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1613, 14, 15syl2an 287 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1716ad2ant2r 506 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1812, 17breqtrd 4015 1 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774   · cmul 7779   < clt 7954  -cneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093
This theorem is referenced by:  inelr  8503  apsqgt0  8520
  Copyright terms: Public domain W3C validator