Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mullt0 | GIF version |
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.) |
Ref | Expression |
---|---|
mullt0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 8130 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | 1 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
3 | lt0neg1 8337 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
4 | 3 | biimpa 294 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴) |
5 | 2, 4 | jca 304 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) |
6 | renegcl 8130 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
7 | 6 | adantr 274 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → -𝐵 ∈ ℝ) |
8 | lt0neg1 8337 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵 < 0 ↔ 0 < -𝐵)) | |
9 | 8 | biimpa 294 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → 0 < -𝐵) |
10 | 7, 9 | jca 304 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) |
11 | mulgt0 7946 | . . 3 ⊢ (((-𝐴 ∈ ℝ ∧ 0 < -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → 0 < (-𝐴 · -𝐵)) | |
12 | 5, 10, 11 | syl2an 287 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (-𝐴 · -𝐵)) |
13 | recn 7859 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | recn 7859 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
15 | mul2neg 8267 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) | |
16 | 13, 14, 15 | syl2an 287 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
17 | 16 | ad2ant2r 501 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
18 | 12, 17 | breqtrd 3990 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5821 ℂcc 7724 ℝcr 7725 0cc0 7726 · cmul 7731 < clt 7906 -cneg 8041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-ltxr 7911 df-sub 8042 df-neg 8043 |
This theorem is referenced by: inelr 8453 apsqgt0 8470 |
Copyright terms: Public domain | W3C validator |