| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridi | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 |
|
| Ref | Expression |
|---|---|
| mulridi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 |
. 2
| |
| 2 | mulrid 8131 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8079 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-mulcl 8085 ax-mulcom 8088 ax-mulass 8090 ax-distr 8091 ax-1rid 8094 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5274 df-fv 5322 df-ov 5997 |
| This theorem is referenced by: rimul 8720 muleqadd 8803 1t1e1 9251 2t1e2 9252 3t1e3 9254 halfpm6th 9319 iap0 9322 9p1e10 9568 numltc 9591 numsucc 9605 dec10p 9608 numadd 9612 numaddc 9613 11multnc 9633 4t3lem 9662 5t2e10 9665 9t11e99 9695 rei 11396 imi 11397 cji 11399 0.999... 12018 efival 12229 ef01bndlem 12253 5ndvds6 12432 3lcm2e6 12668 decsplit0b 12935 2exp8 12944 dveflem 15385 efhalfpi 15458 |
| Copyright terms: Public domain | W3C validator |