| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridi | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 |
|
| Ref | Expression |
|---|---|
| mulridi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 |
. 2
| |
| 2 | mulrid 8042 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-mulcom 7999 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: rimul 8631 muleqadd 8714 1t1e1 9162 2t1e2 9163 3t1e3 9165 halfpm6th 9230 iap0 9233 9p1e10 9478 numltc 9501 numsucc 9515 dec10p 9518 numadd 9522 numaddc 9523 11multnc 9543 4t3lem 9572 5t2e10 9575 9t11e99 9605 rei 11083 imi 11084 cji 11086 0.999... 11705 efival 11916 ef01bndlem 11940 5ndvds6 12119 3lcm2e6 12355 decsplit0b 12622 2exp8 12631 dveflem 15070 efhalfpi 15143 |
| Copyright terms: Public domain | W3C validator |