| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridi | GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 8076 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 1c1 7933 · cmul 7937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8024 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-mulcl 8030 ax-mulcom 8033 ax-mulass 8035 ax-distr 8036 ax-1rid 8039 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 |
| This theorem is referenced by: rimul 8665 muleqadd 8748 1t1e1 9196 2t1e2 9197 3t1e3 9199 halfpm6th 9264 iap0 9267 9p1e10 9513 numltc 9536 numsucc 9550 dec10p 9553 numadd 9557 numaddc 9558 11multnc 9578 4t3lem 9607 5t2e10 9610 9t11e99 9640 rei 11254 imi 11255 cji 11257 0.999... 11876 efival 12087 ef01bndlem 12111 5ndvds6 12290 3lcm2e6 12526 decsplit0b 12793 2exp8 12802 dveflem 15242 efhalfpi 15315 |
| Copyright terms: Public domain | W3C validator |