ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulridi GIF version

Theorem mulridi 8047
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
axi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
mulridi (𝐴 · 1) = 𝐴

Proof of Theorem mulridi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 mulrid 8042 . 2 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
31, 2ax-mp 5 1 (𝐴 · 1) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7896  1c1 7899   · cmul 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7990  ax-1cn 7991  ax-icn 7993  ax-addcl 7994  ax-mulcl 7996  ax-mulcom 7999  ax-mulass 8001  ax-distr 8002  ax-1rid 8005  ax-cnre 8009
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  rimul  8631  muleqadd  8714  1t1e1  9162  2t1e2  9163  3t1e3  9165  halfpm6th  9230  iap0  9233  9p1e10  9478  numltc  9501  numsucc  9515  dec10p  9518  numadd  9522  numaddc  9523  11multnc  9543  4t3lem  9572  5t2e10  9575  9t11e99  9605  rei  11083  imi  11084  cji  11086  0.999...  11705  efival  11916  ef01bndlem  11940  5ndvds6  12119  3lcm2e6  12355  decsplit0b  12622  2exp8  12631  dveflem  15070  efhalfpi  15143
  Copyright terms: Public domain W3C validator