| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridi | GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 8111 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 1c1 7968 · cmul 7972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-mulcom 8068 ax-mulass 8070 ax-distr 8071 ax-1rid 8074 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 |
| This theorem is referenced by: rimul 8700 muleqadd 8783 1t1e1 9231 2t1e2 9232 3t1e3 9234 halfpm6th 9299 iap0 9302 9p1e10 9548 numltc 9571 numsucc 9585 dec10p 9588 numadd 9592 numaddc 9593 11multnc 9613 4t3lem 9642 5t2e10 9645 9t11e99 9675 rei 11376 imi 11377 cji 11379 0.999... 11998 efival 12209 ef01bndlem 12233 5ndvds6 12412 3lcm2e6 12648 decsplit0b 12915 2exp8 12924 dveflem 15365 efhalfpi 15438 |
| Copyright terms: Public domain | W3C validator |