Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neg1z | Unicode version |
Description: -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8893 | . 2 | |
2 | nnnegz 9219 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2142 c1 7779 cneg 8095 cn 8882 cz 9216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-addcom 7878 ax-addass 7880 ax-distr 7882 ax-i2m1 7883 ax-0id 7886 ax-rnegex 7887 ax-cnre 7889 |
This theorem depends on definitions: df-bi 116 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-reu 2456 df-rab 2458 df-v 2733 df-sbc 2957 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-br 3991 df-opab 4052 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-iota 5162 df-fun 5202 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-sub 8096 df-neg 8097 df-inn 8883 df-z 9217 |
This theorem is referenced by: modqnegd 10339 modsumfzodifsn 10356 m1expcl 10503 n2dvdsm1 11876 pythagtriplem4 12226 cosq34lt1 13650 lgslem2 13781 lgsval 13784 lgsfvalg 13785 lgsfcl2 13786 lgsval2lem 13790 lgsvalmod 13799 lgsdir2lem3 13810 lgsdir2lem4 13811 lgsdir 13815 lgsdi 13817 lgsne0 13818 apdiff 14165 |
Copyright terms: Public domain | W3C validator |