ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-apti Unicode version

Theorem axpre-apti 7884
Description: Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 7926.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-apti  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )

Proof of Theorem axpre-apti
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7827 . . 3  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 7827 . . 3  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 breq1 4007 . . . . . 6  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
4 breq2 4008 . . . . . 6  |-  ( <.
x ,  0R >.  =  A  ->  ( <. y ,  0R >.  <RR  <. x ,  0R >.  <->  <. y ,  0R >. 
<RR  A ) )
53, 4orbi12d 793 . . . . 5  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  <-> 
( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >.  <RR  A ) ) )
65notbid 667 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( -.  ( <. x ,  0R >. 
<RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  <. x ,  0R >. )  <->  -.  ( A  <RR 
<. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  A ) ) )
7 eqeq1 2184 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  =  <. y ,  0R >.  <->  A  =  <. y ,  0R >. ) )
86, 7imbi12d 234 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( -.  ( <. x ,  0R >. 
<RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  <. x ,  0R >. )  ->  <. x ,  0R >.  =  <. y ,  0R >. )  <->  ( -.  ( A  <RR  <.
y ,  0R >.  \/ 
<. y ,  0R >.  <RR  A )  ->  A  =  <. y ,  0R >. ) ) )
9 breq2 4008 . . . . . 6  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
10 breq1 4007 . . . . . 6  |-  ( <.
y ,  0R >.  =  B  ->  ( <. y ,  0R >.  <RR  A  <->  B  <RR  A ) )
119, 10orbi12d 793 . . . . 5  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  A )  <->  ( A  <RR  B  \/  B  <RR  A ) ) )
1211notbid 667 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( -.  ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >.  <RR  A )  <->  -.  ( A  <RR  B  \/  B  <RR  A ) ) )
13 eqeq2 2187 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  =  <. y ,  0R >.  <-> 
A  =  B ) )
1412, 13imbi12d 234 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( -.  ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >.  <RR  A )  ->  A  =  <. y ,  0R >. )  <->  ( -.  ( A  <RR  B  \/  B  <RR  A )  ->  A  =  B ) ) )
15 aptisr 7778 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  -.  ( x  <R  y  \/  y  <R  x )
)  ->  x  =  y )
16153expia 1205 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( -.  ( x 
<R  y  \/  y  <R  x )  ->  x  =  y ) )
17 ltresr 7838 . . . . . 6  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
18 ltresr 7838 . . . . . 6  |-  ( <.
y ,  0R >.  <RR  <. x ,  0R >.  <->  y  <R  x )
1917, 18orbi12i 764 . . . . 5  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  <-> 
( x  <R  y  \/  y  <R  x ) )
2019notbii 668 . . . 4  |-  ( -.  ( <. x ,  0R >. 
<RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  <. x ,  0R >. )  <->  -.  ( x  <R  y  \/  y  <R  x ) )
21 vex 2741 . . . . 5  |-  x  e. 
_V
2221eqresr 7835 . . . 4  |-  ( <.
x ,  0R >.  = 
<. y ,  0R >.  <->  x  =  y )
2316, 20, 223imtr4g 205 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( -.  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  ->  <. x ,  0R >.  =  <. y ,  0R >. ) )
241, 2, 8, 14, 232gencl 2771 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A 
<RR  B  \/  B  <RR  A )  ->  A  =  B ) )
25243impia 1200 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3596   class class class wbr 4004   R.cnr 7296   0Rc0r 7297    <R cltr 7302   RRcr 7810    <RR cltrr 7815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-iltp 7469  df-enr 7725  df-nr 7726  df-ltr 7729  df-0r 7730  df-r 7821  df-lt 7824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator