ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2cv1 GIF version

Theorem pr2cv1 7324
Description: If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
Assertion
Ref Expression
pr2cv1 ({𝐴, 𝐵} ≈ 2o𝐴 ∈ V)

Proof of Theorem pr2cv1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 6534 . . . 4 2o = {∅, 1o}
2 ensym 6891 . . . 4 ({𝐴, 𝐵} ≈ 2o → 2o ≈ {𝐴, 𝐵})
31, 2eqbrtrrid 4090 . . 3 ({𝐴, 𝐵} ≈ 2o → {∅, 1o} ≈ {𝐴, 𝐵})
4 bren 6853 . . 3 ({∅, 1o} ≈ {𝐴, 𝐵} ↔ ∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵})
53, 4sylib 122 . 2 ({𝐴, 𝐵} ≈ 2o → ∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵})
6 vex 2776 . . . . . . 7 𝑓 ∈ V
7 0ex 4182 . . . . . . 7 ∅ ∈ V
86, 7fvex 5614 . . . . . 6 (𝑓‘∅) ∈ V
9 eleq1 2269 . . . . . 6 ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V))
108, 9mpbii 148 . . . . 5 ((𝑓‘∅) = 𝐴𝐴 ∈ V)
1110adantl 277 . . . 4 ((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐴) → 𝐴 ∈ V)
12 1oex 6528 . . . . . . . 8 1o ∈ V
136, 12fvex 5614 . . . . . . 7 (𝑓‘1o) ∈ V
14 eleq1 2269 . . . . . . 7 ((𝑓‘1o) = 𝐴 → ((𝑓‘1o) ∈ V ↔ 𝐴 ∈ V))
1513, 14mpbii 148 . . . . . 6 ((𝑓‘1o) = 𝐴𝐴 ∈ V)
1615adantl 277 . . . . 5 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐴) → 𝐴 ∈ V)
17 simplr 528 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘∅) = 𝐵)
18 simpr 110 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘1o) = 𝐵)
1917, 18eqtr4d 2242 . . . . . . 7 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘∅) = (𝑓‘1o))
20 f1of1 5538 . . . . . . . . 9 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝑓:{∅, 1o}–1-1→{𝐴, 𝐵})
2120ad2antrr 488 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 𝑓:{∅, 1o}–1-1→{𝐴, 𝐵})
227prid1 3744 . . . . . . . . 9 ∅ ∈ {∅, 1o}
2322a1i 9 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ∅ ∈ {∅, 1o})
2412prid2 3745 . . . . . . . . 9 1o ∈ {∅, 1o}
2524a1i 9 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 1o ∈ {∅, 1o})
26 f1veqaeq 5856 . . . . . . . 8 ((𝑓:{∅, 1o}–1-1→{𝐴, 𝐵} ∧ (∅ ∈ {∅, 1o} ∧ 1o ∈ {∅, 1o})) → ((𝑓‘∅) = (𝑓‘1o) → ∅ = 1o))
2721, 23, 25, 26syl12anc 1248 . . . . . . 7 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ((𝑓‘∅) = (𝑓‘1o) → ∅ = 1o))
2819, 27mpd 13 . . . . . 6 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ∅ = 1o)
29 1n0 6536 . . . . . . . 8 1o ≠ ∅
3029nesymi 2423 . . . . . . 7 ¬ ∅ = 1o
3130a1i 9 . . . . . 6 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ¬ ∅ = 1o)
3228, 31pm2.21dd 621 . . . . 5 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 𝐴 ∈ V)
33 f1of 5539 . . . . . . . 8 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝑓:{∅, 1o}⟶{𝐴, 𝐵})
3424a1i 9 . . . . . . . 8 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 1o ∈ {∅, 1o})
3533, 34ffvelcdmd 5734 . . . . . . 7 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → (𝑓‘1o) ∈ {𝐴, 𝐵})
36 elpri 3661 . . . . . . 7 ((𝑓‘1o) ∈ {𝐴, 𝐵} → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵))
3735, 36syl 14 . . . . . 6 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵))
3837adantr 276 . . . . 5 ((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵))
3916, 32, 38mpjaodan 800 . . . 4 ((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) → 𝐴 ∈ V)
4022a1i 9 . . . . . 6 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → ∅ ∈ {∅, 1o})
4133, 40ffvelcdmd 5734 . . . . 5 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → (𝑓‘∅) ∈ {𝐴, 𝐵})
42 elpri 3661 . . . . 5 ((𝑓‘∅) ∈ {𝐴, 𝐵} → ((𝑓‘∅) = 𝐴 ∨ (𝑓‘∅) = 𝐵))
4341, 42syl 14 . . . 4 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → ((𝑓‘∅) = 𝐴 ∨ (𝑓‘∅) = 𝐵))
4411, 39, 43mpjaodan 800 . . 3 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝐴 ∈ V)
4544exlimiv 1622 . 2 (∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝐴 ∈ V)
465, 45syl 14 1 ({𝐴, 𝐵} ≈ 2o𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  c0 3464  {cpr 3639   class class class wbr 4054  1-1wf1 5282  1-1-ontowf1o 5284  cfv 5285  1oc1o 6513  2oc2o 6514  cen 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846
This theorem is referenced by:  pr2cv2  7325  pr2cv  7326
  Copyright terms: Public domain W3C validator