| Step | Hyp | Ref
| Expression |
| 1 | | df2o3 6534 |
. . . 4
⊢
2o = {∅, 1o} |
| 2 | | ensym 6891 |
. . . 4
⊢ ({𝐴, 𝐵} ≈ 2o → 2o
≈ {𝐴, 𝐵}) |
| 3 | 1, 2 | eqbrtrrid 4090 |
. . 3
⊢ ({𝐴, 𝐵} ≈ 2o → {∅,
1o} ≈ {𝐴,
𝐵}) |
| 4 | | bren 6853 |
. . 3
⊢
({∅, 1o} ≈ {𝐴, 𝐵} ↔ ∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵}) |
| 5 | 3, 4 | sylib 122 |
. 2
⊢ ({𝐴, 𝐵} ≈ 2o → ∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵}) |
| 6 | | vex 2776 |
. . . . . . 7
⊢ 𝑓 ∈ V |
| 7 | | 0ex 4182 |
. . . . . . 7
⊢ ∅
∈ V |
| 8 | 6, 7 | fvex 5614 |
. . . . . 6
⊢ (𝑓‘∅) ∈
V |
| 9 | | eleq1 2269 |
. . . . . 6
⊢ ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V)) |
| 10 | 8, 9 | mpbii 148 |
. . . . 5
⊢ ((𝑓‘∅) = 𝐴 → 𝐴 ∈ V) |
| 11 | 10 | adantl 277 |
. . . 4
⊢ ((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐴) → 𝐴 ∈ V) |
| 12 | | 1oex 6528 |
. . . . . . . 8
⊢
1o ∈ V |
| 13 | 6, 12 | fvex 5614 |
. . . . . . 7
⊢ (𝑓‘1o) ∈
V |
| 14 | | eleq1 2269 |
. . . . . . 7
⊢ ((𝑓‘1o) = 𝐴 → ((𝑓‘1o) ∈ V ↔ 𝐴 ∈ V)) |
| 15 | 13, 14 | mpbii 148 |
. . . . . 6
⊢ ((𝑓‘1o) = 𝐴 → 𝐴 ∈ V) |
| 16 | 15 | adantl 277 |
. . . . 5
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐴) → 𝐴 ∈ V) |
| 17 | | simplr 528 |
. . . . . . . 8
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘∅) = 𝐵) |
| 18 | | simpr 110 |
. . . . . . . 8
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘1o) = 𝐵) |
| 19 | 17, 18 | eqtr4d 2242 |
. . . . . . 7
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘∅) = (𝑓‘1o)) |
| 20 | | f1of1 5538 |
. . . . . . . . 9
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → 𝑓:{∅, 1o}–1-1→{𝐴, 𝐵}) |
| 21 | 20 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 𝑓:{∅, 1o}–1-1→{𝐴, 𝐵}) |
| 22 | 7 | prid1 3744 |
. . . . . . . . 9
⊢ ∅
∈ {∅, 1o} |
| 23 | 22 | a1i 9 |
. . . . . . . 8
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ∅ ∈ {∅,
1o}) |
| 24 | 12 | prid2 3745 |
. . . . . . . . 9
⊢
1o ∈ {∅, 1o} |
| 25 | 24 | a1i 9 |
. . . . . . . 8
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 1o ∈ {∅,
1o}) |
| 26 | | f1veqaeq 5856 |
. . . . . . . 8
⊢ ((𝑓:{∅,
1o}–1-1→{𝐴, 𝐵} ∧ (∅ ∈ {∅,
1o} ∧ 1o ∈ {∅, 1o})) →
((𝑓‘∅) = (𝑓‘1o) →
∅ = 1o)) |
| 27 | 21, 23, 25, 26 | syl12anc 1248 |
. . . . . . 7
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ((𝑓‘∅) = (𝑓‘1o) → ∅ =
1o)) |
| 28 | 19, 27 | mpd 13 |
. . . . . 6
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ∅ =
1o) |
| 29 | | 1n0 6536 |
. . . . . . . 8
⊢
1o ≠ ∅ |
| 30 | 29 | nesymi 2423 |
. . . . . . 7
⊢ ¬
∅ = 1o |
| 31 | 30 | a1i 9 |
. . . . . 6
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ¬ ∅ =
1o) |
| 32 | 28, 31 | pm2.21dd 621 |
. . . . 5
⊢ (((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 𝐴 ∈ V) |
| 33 | | f1of 5539 |
. . . . . . . 8
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → 𝑓:{∅, 1o}⟶{𝐴, 𝐵}) |
| 34 | 24 | a1i 9 |
. . . . . . . 8
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → 1o ∈ {∅,
1o}) |
| 35 | 33, 34 | ffvelcdmd 5734 |
. . . . . . 7
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → (𝑓‘1o) ∈ {𝐴, 𝐵}) |
| 36 | | elpri 3661 |
. . . . . . 7
⊢ ((𝑓‘1o) ∈
{𝐴, 𝐵} → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵)) |
| 37 | 35, 36 | syl 14 |
. . . . . 6
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵)) |
| 38 | 37 | adantr 276 |
. . . . 5
⊢ ((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵)) |
| 39 | 16, 32, 38 | mpjaodan 800 |
. . . 4
⊢ ((𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) → 𝐴 ∈ V) |
| 40 | 22 | a1i 9 |
. . . . . 6
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → ∅ ∈ {∅,
1o}) |
| 41 | 33, 40 | ffvelcdmd 5734 |
. . . . 5
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → (𝑓‘∅) ∈ {𝐴, 𝐵}) |
| 42 | | elpri 3661 |
. . . . 5
⊢ ((𝑓‘∅) ∈ {𝐴, 𝐵} → ((𝑓‘∅) = 𝐴 ∨ (𝑓‘∅) = 𝐵)) |
| 43 | 41, 42 | syl 14 |
. . . 4
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → ((𝑓‘∅) = 𝐴 ∨ (𝑓‘∅) = 𝐵)) |
| 44 | 11, 39, 43 | mpjaodan 800 |
. . 3
⊢ (𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → 𝐴 ∈ V) |
| 45 | 44 | exlimiv 1622 |
. 2
⊢
(∃𝑓 𝑓:{∅,
1o}–1-1-onto→{𝐴, 𝐵} → 𝐴 ∈ V) |
| 46 | 5, 45 | syl 14 |
1
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) |