ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2cv1 GIF version

Theorem pr2cv1 7364
Description: If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
Assertion
Ref Expression
pr2cv1 ({𝐴, 𝐵} ≈ 2o𝐴 ∈ V)

Proof of Theorem pr2cv1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 6574 . . . 4 2o = {∅, 1o}
2 ensym 6931 . . . 4 ({𝐴, 𝐵} ≈ 2o → 2o ≈ {𝐴, 𝐵})
31, 2eqbrtrrid 4118 . . 3 ({𝐴, 𝐵} ≈ 2o → {∅, 1o} ≈ {𝐴, 𝐵})
4 bren 6893 . . 3 ({∅, 1o} ≈ {𝐴, 𝐵} ↔ ∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵})
53, 4sylib 122 . 2 ({𝐴, 𝐵} ≈ 2o → ∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵})
6 vex 2802 . . . . . . 7 𝑓 ∈ V
7 0ex 4210 . . . . . . 7 ∅ ∈ V
86, 7fvex 5646 . . . . . 6 (𝑓‘∅) ∈ V
9 eleq1 2292 . . . . . 6 ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V))
108, 9mpbii 148 . . . . 5 ((𝑓‘∅) = 𝐴𝐴 ∈ V)
1110adantl 277 . . . 4 ((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐴) → 𝐴 ∈ V)
12 1oex 6568 . . . . . . . 8 1o ∈ V
136, 12fvex 5646 . . . . . . 7 (𝑓‘1o) ∈ V
14 eleq1 2292 . . . . . . 7 ((𝑓‘1o) = 𝐴 → ((𝑓‘1o) ∈ V ↔ 𝐴 ∈ V))
1513, 14mpbii 148 . . . . . 6 ((𝑓‘1o) = 𝐴𝐴 ∈ V)
1615adantl 277 . . . . 5 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐴) → 𝐴 ∈ V)
17 simplr 528 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘∅) = 𝐵)
18 simpr 110 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘1o) = 𝐵)
1917, 18eqtr4d 2265 . . . . . . 7 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → (𝑓‘∅) = (𝑓‘1o))
20 f1of1 5570 . . . . . . . . 9 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝑓:{∅, 1o}–1-1→{𝐴, 𝐵})
2120ad2antrr 488 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 𝑓:{∅, 1o}–1-1→{𝐴, 𝐵})
227prid1 3772 . . . . . . . . 9 ∅ ∈ {∅, 1o}
2322a1i 9 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ∅ ∈ {∅, 1o})
2412prid2 3773 . . . . . . . . 9 1o ∈ {∅, 1o}
2524a1i 9 . . . . . . . 8 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 1o ∈ {∅, 1o})
26 f1veqaeq 5892 . . . . . . . 8 ((𝑓:{∅, 1o}–1-1→{𝐴, 𝐵} ∧ (∅ ∈ {∅, 1o} ∧ 1o ∈ {∅, 1o})) → ((𝑓‘∅) = (𝑓‘1o) → ∅ = 1o))
2721, 23, 25, 26syl12anc 1269 . . . . . . 7 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ((𝑓‘∅) = (𝑓‘1o) → ∅ = 1o))
2819, 27mpd 13 . . . . . 6 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ∅ = 1o)
29 1n0 6576 . . . . . . . 8 1o ≠ ∅
3029nesymi 2446 . . . . . . 7 ¬ ∅ = 1o
3130a1i 9 . . . . . 6 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → ¬ ∅ = 1o)
3228, 31pm2.21dd 623 . . . . 5 (((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) ∧ (𝑓‘1o) = 𝐵) → 𝐴 ∈ V)
33 f1of 5571 . . . . . . . 8 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝑓:{∅, 1o}⟶{𝐴, 𝐵})
3424a1i 9 . . . . . . . 8 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 1o ∈ {∅, 1o})
3533, 34ffvelcdmd 5770 . . . . . . 7 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → (𝑓‘1o) ∈ {𝐴, 𝐵})
36 elpri 3689 . . . . . . 7 ((𝑓‘1o) ∈ {𝐴, 𝐵} → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵))
3735, 36syl 14 . . . . . 6 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵))
3837adantr 276 . . . . 5 ((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) → ((𝑓‘1o) = 𝐴 ∨ (𝑓‘1o) = 𝐵))
3916, 32, 38mpjaodan 803 . . . 4 ((𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} ∧ (𝑓‘∅) = 𝐵) → 𝐴 ∈ V)
4022a1i 9 . . . . . 6 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → ∅ ∈ {∅, 1o})
4133, 40ffvelcdmd 5770 . . . . 5 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → (𝑓‘∅) ∈ {𝐴, 𝐵})
42 elpri 3689 . . . . 5 ((𝑓‘∅) ∈ {𝐴, 𝐵} → ((𝑓‘∅) = 𝐴 ∨ (𝑓‘∅) = 𝐵))
4341, 42syl 14 . . . 4 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → ((𝑓‘∅) = 𝐴 ∨ (𝑓‘∅) = 𝐵))
4411, 39, 43mpjaodan 803 . . 3 (𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝐴 ∈ V)
4544exlimiv 1644 . 2 (∃𝑓 𝑓:{∅, 1o}–1-1-onto→{𝐴, 𝐵} → 𝐴 ∈ V)
465, 45syl 14 1 ({𝐴, 𝐵} ≈ 2o𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  c0 3491  {cpr 3667   class class class wbr 4082  1-1wf1 5314  1-1-ontowf1o 5316  cfv 5317  1oc1o 6553  2oc2o 6554  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886
This theorem is referenced by:  pr2cv2  7365  pr2cv  7366
  Copyright terms: Public domain W3C validator