ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quselbasg Unicode version

Theorem quselbasg 13762
Description: Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.)
Hypotheses
Ref Expression
quselbas.e  |-  .~  =  ( G ~QG  S )
quselbas.u  |-  U  =  ( G  /.s  .~  )
quselbas.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
quselbasg  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  (
Base `  U )  <->  E. x  e.  B  X  =  [ x ]  .~  ) )
Distinct variable groups:    x, B    x, X    x,  .~
Allowed substitution hints:    S( x)    U( x)    G( x)    V( x)    W( x)    Z( x)

Proof of Theorem quselbasg
StepHypRef Expression
1 quselbas.u . . . . . 6  |-  U  =  ( G  /.s  .~  )
21a1i 9 . . . . 5  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  U  =  ( G 
/.s  .~  ) )
3 quselbas.b . . . . . 6  |-  B  =  ( Base `  G
)
43a1i 9 . . . . 5  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  B  =  ( Base `  G ) )
5 quselbas.e . . . . . 6  |-  .~  =  ( G ~QG  S )
6 eqgex 13753 . . . . . . 7  |-  ( ( G  e.  V  /\  S  e.  Z )  ->  ( G ~QG  S )  e.  _V )
763adant2 1040 . . . . . 6  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( G ~QG  S )  e.  _V )
85, 7eqeltrid 2316 . . . . 5  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  .~  e.  _V )
9 simp1 1021 . . . . 5  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  G  e.  V )
102, 4, 8, 9qusbas 13355 . . . 4  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( B /.  .~  )  =  ( Base `  U ) )
1110eqcomd 2235 . . 3  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( Base `  U
)  =  ( B /.  .~  ) )
1211eleq2d 2299 . 2  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  (
Base `  U )  <->  X  e.  ( B /.  .~  ) ) )
13 elqsg 6730 . . 3  |-  ( X  e.  W  ->  ( X  e.  ( B /.  .~  )  <->  E. x  e.  B  X  =  [ x ]  .~  ) )
14133ad2ant2 1043 . 2  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  ( B /.  .~  )  <->  E. x  e.  B  X  =  [ x ]  .~  ) )
1512, 14bitrd 188 1  |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  (
Base `  U )  <->  E. x  e.  B  X  =  [ x ]  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   ` cfv 5317  (class class class)co 6000   [cec 6676   /.cqs 6677   Basecbs 13027    /.s cqus 13328   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-ec 6680  df-qs 6684  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-iimas 13330  df-qus 13331  df-eqg 13704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator