| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > quselbasg | GIF version | ||
| Description: Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.) |
| Ref | Expression |
|---|---|
| quselbas.e | ⊢ ∼ = (𝐺 ~QG 𝑆) |
| quselbas.u | ⊢ 𝑈 = (𝐺 /s ∼ ) |
| quselbas.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| quselbasg | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quselbas.u | . . . . . 6 ⊢ 𝑈 = (𝐺 /s ∼ ) | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → 𝑈 = (𝐺 /s ∼ )) |
| 3 | quselbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → 𝐵 = (Base‘𝐺)) |
| 5 | quselbas.e | . . . . . 6 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
| 6 | eqgex 13601 | . . . . . . 7 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑍) → (𝐺 ~QG 𝑆) ∈ V) | |
| 7 | 6 | 3adant2 1019 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (𝐺 ~QG 𝑆) ∈ V) |
| 8 | 5, 7 | eqeltrid 2293 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → ∼ ∈ V) |
| 9 | simp1 1000 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → 𝐺 ∈ 𝑉) | |
| 10 | 2, 4, 8, 9 | qusbas 13203 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (𝐵 / ∼ ) = (Base‘𝑈)) |
| 11 | 10 | eqcomd 2212 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (Base‘𝑈) = (𝐵 / ∼ )) |
| 12 | 11 | eleq2d 2276 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (𝑋 ∈ (Base‘𝑈) ↔ 𝑋 ∈ (𝐵 / ∼ ))) |
| 13 | elqsg 6679 | . . 3 ⊢ (𝑋 ∈ 𝑊 → (𝑋 ∈ (𝐵 / ∼ ) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) | |
| 14 | 13 | 3ad2ant2 1022 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (𝑋 ∈ (𝐵 / ∼ ) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
| 15 | 12, 14 | bitrd 188 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 ‘cfv 5276 (class class class)co 5951 [cec 6625 / cqs 6626 Basecbs 12876 /s cqus 13176 ~QG cqg 13549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-ec 6629 df-qs 6633 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-iimas 13178 df-qus 13179 df-eqg 13552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |