ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqg0el Unicode version

Theorem eqg0el 13193
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Hypothesis
Ref Expression
eqg0el.1  |-  .~  =  ( G ~QG  H )
Assertion
Ref Expression
eqg0el  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( [ X ]  .~  =  H 
<->  X  e.  H ) )

Proof of Theorem eqg0el
StepHypRef Expression
1 eqid 2189 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
2 eqg0el.1 . . . . . 6  |-  .~  =  ( G ~QG  H )
31, 2eqger 13188 . . . . 5  |-  ( H  e.  (SubGrp `  G
)  ->  .~  Er  ( Base `  G ) )
43adantl 277 . . . 4  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  .~  Er  ( Base `  G )
)
5 eqid 2189 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
61, 5grpidcl 12996 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
76adantr 276 . . . 4  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( 0g `  G )  e.  ( Base `  G
) )
84, 7erth 6609 . . 3  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  (
( 0g `  G
)  .~  X  <->  [ ( 0g `  G ) ]  .~  =  [ X ]  .~  ) )
91, 2, 5eqgid 13190 . . . . 5  |-  ( H  e.  (SubGrp `  G
)  ->  [ ( 0g `  G ) ]  .~  =  H )
109adantl 277 . . . 4  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  [ ( 0g `  G ) ]  .~  =  H )
1110eqeq1d 2198 . . 3  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( [ ( 0g `  G ) ]  .~  =  [ X ]  .~  <->  H  =  [ X ]  .~  ) )
12 eqcom 2191 . . . 4  |-  ( H  =  [ X ]  .~ 
<->  [ X ]  .~  =  H )
1312a1i 9 . . 3  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( H  =  [ X ]  .~  <->  [ X ]  .~  =  H ) )
148, 11, 133bitrrd 215 . 2  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( [ X ]  .~  =  H 
<->  ( 0g `  G
)  .~  X )
)
15 errel 6572 . . . 4  |-  (  .~  Er  ( Base `  G
)  ->  Rel  .~  )
16 relelec 6605 . . . 4  |-  ( Rel 
.~  ->  ( X  e. 
[ ( 0g `  G ) ]  .~  <->  ( 0g `  G )  .~  X ) )
173, 15, 163syl 17 . . 3  |-  ( H  e.  (SubGrp `  G
)  ->  ( X  e.  [ ( 0g `  G ) ]  .~  <->  ( 0g `  G )  .~  X ) )
1817adantl 277 . 2  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( X  e.  [ ( 0g `  G ) ]  .~  <->  ( 0g `  G )  .~  X
) )
1910eleq2d 2259 . 2  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( X  e.  [ ( 0g `  G ) ]  .~  <->  X  e.  H
) )
2014, 18, 193bitr2d 216 1  |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G
) )  ->  ( [ X ]  .~  =  H 
<->  X  e.  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   class class class wbr 4021   Rel wrel 4652   ` cfv 5238  (class class class)co 5900    Er wer 6560   [cec 6561   Basecbs 12523   0gc0g 12772   Grpcgrp 12968  SubGrpcsubg 13131   ~QG cqg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-er 6563  df-ec 6565  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-subg 13134  df-eqg 13136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator