ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remetdval Unicode version

Theorem remetdval 15019
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
remetdval  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )

Proof of Theorem remetdval
StepHypRef Expression
1 df-ov 5947 . . 3  |-  ( A D B )  =  ( D `  <. A ,  B >. )
2 remet.1 . . . 4  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
32fveq1i 5577 . . 3  |-  ( D `
 <. A ,  B >. )  =  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) `  <. A ,  B >. )
41, 3eqtri 2226 . 2  |-  ( A D B )  =  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) `
 <. A ,  B >. )
5 opelxpi 4707 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
<. A ,  B >.  e.  ( RR  X.  RR ) )
6 fvres 5600 . . . 4  |-  ( <. A ,  B >.  e.  ( RR  X.  RR )  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) `  <. A ,  B >. )  =  ( ( abs 
o.  -  ) `  <. A ,  B >. ) )
75, 6syl 14 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) `
 <. A ,  B >. )  =  ( ( abs  o.  -  ) `  <. A ,  B >. ) )
8 df-ov 5947 . . . 4  |-  ( A ( abs  o.  -  ) B )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
9 recn 8058 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
10 recn 8058 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
11 eqid 2205 . . . . . 6  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1211cnmetdval 15001 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ( abs 
o.  -  ) B
)  =  ( abs `  ( A  -  B
) ) )
139, 10, 12syl2an 289 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( abs 
o.  -  ) B
)  =  ( abs `  ( A  -  B
) ) )
148, 13eqtr3id 2252 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  ( A  -  B )
) )
157, 14eqtrd 2238 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) `
 <. A ,  B >. )  =  ( abs `  ( A  -  B
) ) )
164, 15eqtrid 2250 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   <.cop 3636    X. cxp 4673    |` cres 4677    o. ccom 4679   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924    - cmin 8243   abscabs 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-sub 8245
This theorem is referenced by:  bl2ioo  15022
  Copyright terms: Public domain W3C validator