ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remetdval Unicode version

Theorem remetdval 14707
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
remetdval  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )

Proof of Theorem remetdval
StepHypRef Expression
1 df-ov 5921 . . 3  |-  ( A D B )  =  ( D `  <. A ,  B >. )
2 remet.1 . . . 4  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
32fveq1i 5555 . . 3  |-  ( D `
 <. A ,  B >. )  =  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) `  <. A ,  B >. )
41, 3eqtri 2214 . 2  |-  ( A D B )  =  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) `
 <. A ,  B >. )
5 opelxpi 4691 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
<. A ,  B >.  e.  ( RR  X.  RR ) )
6 fvres 5578 . . . 4  |-  ( <. A ,  B >.  e.  ( RR  X.  RR )  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) `  <. A ,  B >. )  =  ( ( abs 
o.  -  ) `  <. A ,  B >. ) )
75, 6syl 14 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) `
 <. A ,  B >. )  =  ( ( abs  o.  -  ) `  <. A ,  B >. ) )
8 df-ov 5921 . . . 4  |-  ( A ( abs  o.  -  ) B )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
9 recn 8005 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
10 recn 8005 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
11 eqid 2193 . . . . . 6  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1211cnmetdval 14697 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ( abs 
o.  -  ) B
)  =  ( abs `  ( A  -  B
) ) )
139, 10, 12syl2an 289 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( abs 
o.  -  ) B
)  =  ( abs `  ( A  -  B
) ) )
148, 13eqtr3id 2240 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  ( A  -  B )
) )
157, 14eqtrd 2226 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) `
 <. A ,  B >. )  =  ( abs `  ( A  -  B
) ) )
164, 15eqtrid 2238 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   <.cop 3621    X. cxp 4657    |` cres 4661    o. ccom 4663   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871    - cmin 8190   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-sub 8192
This theorem is referenced by:  bl2ioo  14710
  Copyright terms: Public domain W3C validator