ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2ioo Unicode version

Theorem bl2ioo 12700
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
bl2ioo  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B
) ) )

Proof of Theorem bl2ioo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . . . . . . 10  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21remetdval 12697 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A D x )  =  ( abs `  ( A  -  x
) ) )
3 recn 7746 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 7746 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
5 abssub 10866 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
63, 4, 5syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
72, 6eqtrd 2170 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A D x )  =  ( abs `  ( x  -  A
) ) )
87breq1d 3934 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A D x )  <  B  <->  ( abs `  ( x  -  A ) )  <  B ) )
98adantlr 468 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( A D x )  < 
B  <->  ( abs `  (
x  -  A ) )  <  B ) )
10 absdiflt 10857 . . . . . . . 8  |-  ( ( x  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( ( A  -  B )  <  x  /\  x  < 
( A  +  B
) ) ) )
11103expb 1182 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  ( ( abs `  ( x  -  A ) )  < 
B  <->  ( ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
1211ancoms 266 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( abs `  ( x  -  A
) )  <  B  <->  ( ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) ) ) )
139, 12bitrd 187 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( A D x )  < 
B  <->  ( ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
1413pm5.32da 447 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  ( A D x )  < 
B )  <->  ( x  e.  RR  /\  ( ( A  -  B )  <  x  /\  x  <  ( A  +  B
) ) ) ) )
15 3anass 966 . . . 4  |-  ( ( x  e.  RR  /\  ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) )  <->  ( x  e.  RR  /\  ( ( A  -  B )  <  x  /\  x  <  ( A  +  B
) ) ) )
1614, 15syl6bbr 197 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  ( A D x )  < 
B )  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
17 rexr 7804 . . . 4  |-  ( B  e.  RR  ->  B  e.  RR* )
181rexmet 12699 . . . . 5  |-  D  e.  ( *Met `  RR )
19 elbl 12549 . . . . 5  |-  ( ( D  e.  ( *Met `  RR )  /\  A  e.  RR  /\  B  e.  RR* )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
2018, 19mp3an1 1302 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
2117, 20sylan2 284 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
22 resubcl 8019 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
23 readdcl 7739 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
24 rexr 7804 . . . . 5  |-  ( ( A  -  B )  e.  RR  ->  ( A  -  B )  e.  RR* )
25 rexr 7804 . . . . 5  |-  ( ( A  +  B )  e.  RR  ->  ( A  +  B )  e.  RR* )
26 elioo2 9697 . . . . 5  |-  ( ( ( A  -  B
)  e.  RR*  /\  ( A  +  B )  e.  RR* )  ->  (
x  e.  ( ( A  -  B ) (,) ( A  +  B ) )  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
2724, 25, 26syl2an 287 . . . 4  |-  ( ( ( A  -  B
)  e.  RR  /\  ( A  +  B
)  e.  RR )  ->  ( x  e.  ( ( A  -  B ) (,) ( A  +  B )
)  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
2822, 23, 27syl2anc 408 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( ( A  -  B
) (,) ( A  +  B ) )  <-> 
( x  e.  RR  /\  ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) ) ) )
2916, 21, 283bitr4d 219 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  x  e.  ( ( A  -  B ) (,) ( A  +  B )
) ) )
3029eqrdv 2135 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3924    X. cxp 4532    |` cres 4536    o. ccom 4538   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612    + caddc 7616   RR*cxr 7792    < clt 7793    - cmin 7926   (,)cioo 9664   abscabs 10762   *Metcxmet 12138   ballcbl 12140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-xadd 9553  df-ioo 9668  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-psmet 12145  df-xmet 12146  df-met 12147  df-bl 12148
This theorem is referenced by:  ioo2bl  12701  blssioo  12703  tgioo  12704
  Copyright terms: Public domain W3C validator