ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2ioo Unicode version

Theorem bl2ioo 15218
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
bl2ioo  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B
) ) )

Proof of Theorem bl2ioo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . . . . . . 10  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21remetdval 15215 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A D x )  =  ( abs `  ( A  -  x
) ) )
3 recn 8128 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 8128 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
5 abssub 11607 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
63, 4, 5syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
72, 6eqtrd 2262 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A D x )  =  ( abs `  ( x  -  A
) ) )
87breq1d 4092 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A D x )  <  B  <->  ( abs `  ( x  -  A ) )  <  B ) )
98adantlr 477 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( A D x )  < 
B  <->  ( abs `  (
x  -  A ) )  <  B ) )
10 absdiflt 11598 . . . . . . . 8  |-  ( ( x  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( ( A  -  B )  <  x  /\  x  < 
( A  +  B
) ) ) )
11103expb 1228 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  ( ( abs `  ( x  -  A ) )  < 
B  <->  ( ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
1211ancoms 268 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( abs `  ( x  -  A
) )  <  B  <->  ( ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) ) ) )
139, 12bitrd 188 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( A D x )  < 
B  <->  ( ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
1413pm5.32da 452 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  ( A D x )  < 
B )  <->  ( x  e.  RR  /\  ( ( A  -  B )  <  x  /\  x  <  ( A  +  B
) ) ) ) )
15 3anass 1006 . . . 4  |-  ( ( x  e.  RR  /\  ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) )  <->  ( x  e.  RR  /\  ( ( A  -  B )  <  x  /\  x  <  ( A  +  B
) ) ) )
1614, 15bitr4di 198 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  ( A D x )  < 
B )  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
17 rexr 8188 . . . 4  |-  ( B  e.  RR  ->  B  e.  RR* )
181rexmet 15217 . . . . 5  |-  D  e.  ( *Met `  RR )
19 elbl 15059 . . . . 5  |-  ( ( D  e.  ( *Met `  RR )  /\  A  e.  RR  /\  B  e.  RR* )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
2018, 19mp3an1 1358 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
2117, 20sylan2 286 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
22 resubcl 8406 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
23 readdcl 8121 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
24 rexr 8188 . . . . 5  |-  ( ( A  -  B )  e.  RR  ->  ( A  -  B )  e.  RR* )
25 rexr 8188 . . . . 5  |-  ( ( A  +  B )  e.  RR  ->  ( A  +  B )  e.  RR* )
26 elioo2 10113 . . . . 5  |-  ( ( ( A  -  B
)  e.  RR*  /\  ( A  +  B )  e.  RR* )  ->  (
x  e.  ( ( A  -  B ) (,) ( A  +  B ) )  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
2724, 25, 26syl2an 289 . . . 4  |-  ( ( ( A  -  B
)  e.  RR  /\  ( A  +  B
)  e.  RR )  ->  ( x  e.  ( ( A  -  B ) (,) ( A  +  B )
)  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
2822, 23, 27syl2anc 411 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( ( A  -  B
) (,) ( A  +  B ) )  <-> 
( x  e.  RR  /\  ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) ) ) )
2916, 21, 283bitr4d 220 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  x  e.  ( ( A  -  B ) (,) ( A  +  B )
) ) )
3029eqrdv 2227 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082    X. cxp 4716    |` cres 4720    o. ccom 4722   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994    + caddc 7998   RR*cxr 8176    < clt 8177    - cmin 8313   (,)cioo 10080   abscabs 11503   *Metcxmet 14494   ballcbl 14496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-xadd 9965  df-ioo 10084  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504
This theorem is referenced by:  ioo2bl  15219  blssioo  15221  tgioo  15222
  Copyright terms: Public domain W3C validator