ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2ioo Unicode version

Theorem bl2ioo 14894
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
bl2ioo  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B
) ) )

Proof of Theorem bl2ioo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . . . . . . 10  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21remetdval 14891 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A D x )  =  ( abs `  ( A  -  x
) ) )
3 recn 8031 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 8031 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
5 abssub 11285 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
63, 4, 5syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
72, 6eqtrd 2229 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A D x )  =  ( abs `  ( x  -  A
) ) )
87breq1d 4044 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A D x )  <  B  <->  ( abs `  ( x  -  A ) )  <  B ) )
98adantlr 477 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( A D x )  < 
B  <->  ( abs `  (
x  -  A ) )  <  B ) )
10 absdiflt 11276 . . . . . . . 8  |-  ( ( x  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( ( A  -  B )  <  x  /\  x  < 
( A  +  B
) ) ) )
11103expb 1206 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  ( ( abs `  ( x  -  A ) )  < 
B  <->  ( ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
1211ancoms 268 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( abs `  ( x  -  A
) )  <  B  <->  ( ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) ) ) )
139, 12bitrd 188 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( A D x )  < 
B  <->  ( ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
1413pm5.32da 452 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  ( A D x )  < 
B )  <->  ( x  e.  RR  /\  ( ( A  -  B )  <  x  /\  x  <  ( A  +  B
) ) ) ) )
15 3anass 984 . . . 4  |-  ( ( x  e.  RR  /\  ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) )  <->  ( x  e.  RR  /\  ( ( A  -  B )  <  x  /\  x  <  ( A  +  B
) ) ) )
1614, 15bitr4di 198 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  ( A D x )  < 
B )  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
17 rexr 8091 . . . 4  |-  ( B  e.  RR  ->  B  e.  RR* )
181rexmet 14893 . . . . 5  |-  D  e.  ( *Met `  RR )
19 elbl 14735 . . . . 5  |-  ( ( D  e.  ( *Met `  RR )  /\  A  e.  RR  /\  B  e.  RR* )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
2018, 19mp3an1 1335 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
2117, 20sylan2 286 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  ( x  e.  RR  /\  ( A D x )  < 
B ) ) )
22 resubcl 8309 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
23 readdcl 8024 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
24 rexr 8091 . . . . 5  |-  ( ( A  -  B )  e.  RR  ->  ( A  -  B )  e.  RR* )
25 rexr 8091 . . . . 5  |-  ( ( A  +  B )  e.  RR  ->  ( A  +  B )  e.  RR* )
26 elioo2 10015 . . . . 5  |-  ( ( ( A  -  B
)  e.  RR*  /\  ( A  +  B )  e.  RR* )  ->  (
x  e.  ( ( A  -  B ) (,) ( A  +  B ) )  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
2724, 25, 26syl2an 289 . . . 4  |-  ( ( ( A  -  B
)  e.  RR  /\  ( A  +  B
)  e.  RR )  ->  ( x  e.  ( ( A  -  B ) (,) ( A  +  B )
)  <->  ( x  e.  RR  /\  ( A  -  B )  < 
x  /\  x  <  ( A  +  B ) ) ) )
2822, 23, 27syl2anc 411 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( ( A  -  B
) (,) ( A  +  B ) )  <-> 
( x  e.  RR  /\  ( A  -  B
)  <  x  /\  x  <  ( A  +  B ) ) ) )
2916, 21, 283bitr4d 220 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A ( ball `  D
) B )  <->  x  e.  ( ( A  -  B ) (,) ( A  +  B )
) ) )
3029eqrdv 2194 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034    X. cxp 4662    |` cres 4666    o. ccom 4668   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897    + caddc 7901   RR*cxr 8079    < clt 8080    - cmin 8216   (,)cioo 9982   abscabs 11181   *Metcxmet 14170   ballcbl 14172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-xadd 9867  df-ioo 9986  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180
This theorem is referenced by:  ioo2bl  14895  blssioo  14897  tgioo  14898
  Copyright terms: Public domain W3C validator