ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmetdval Unicode version

Theorem cnmetdval 14432
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypothesis
Ref Expression
cnmetdval.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnmetdval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )

Proof of Theorem cnmetdval
StepHypRef Expression
1 subf 8178 . . 3  |-  -  :
( CC  X.  CC )
--> CC
2 opelxpi 4673 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
<. A ,  B >.  e.  ( CC  X.  CC ) )
3 fvco3 5603 . . 3  |-  ( (  -  : ( CC 
X.  CC ) --> CC 
/\  <. A ,  B >.  e.  ( CC  X.  CC ) )  ->  (
( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. )
) )
41, 2, 3sylancr 414 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. ) ) )
5 df-ov 5894 . . 3  |-  ( A D B )  =  ( D `  <. A ,  B >. )
6 cnmetdval.1 . . . 4  |-  D  =  ( abs  o.  -  )
76fveq1i 5531 . . 3  |-  ( D `
 <. A ,  B >. )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
85, 7eqtri 2210 . 2  |-  ( A D B )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
9 df-ov 5894 . . 3  |-  ( A  -  B )  =  (  -  `  <. A ,  B >. )
109fveq2i 5533 . 2  |-  ( abs `  ( A  -  B
) )  =  ( abs `  (  -  ` 
<. A ,  B >. ) )
114, 8, 103eqtr4g 2247 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   <.cop 3610    X. cxp 4639    o. ccom 4645   -->wf 5227   ` cfv 5231  (class class class)co 5891   CCcc 7828    - cmin 8147   abscabs 11025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-resscn 7922  ax-1cn 7923  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-addcom 7930  ax-addass 7932  ax-distr 7934  ax-i2m1 7935  ax-0id 7938  ax-rnegex 7939  ax-cnre 7941
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-sub 8149
This theorem is referenced by:  cnmet  14433  cnbl0  14437  cnblcld  14438  remetdval  14442  addcncntoplem  14454  divcnap  14458  cncfmet  14482  cnopnap  14497  limcimolemlt  14536  cnplimcim  14539  cnplimclemr  14541  limccnpcntop  14547  limccnp2lem  14548
  Copyright terms: Public domain W3C validator