ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmetdval Unicode version

Theorem cnmetdval 14269
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypothesis
Ref Expression
cnmetdval.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnmetdval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )

Proof of Theorem cnmetdval
StepHypRef Expression
1 subf 8172 . . 3  |-  -  :
( CC  X.  CC )
--> CC
2 opelxpi 4670 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
<. A ,  B >.  e.  ( CC  X.  CC ) )
3 fvco3 5600 . . 3  |-  ( (  -  : ( CC 
X.  CC ) --> CC 
/\  <. A ,  B >.  e.  ( CC  X.  CC ) )  ->  (
( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. )
) )
41, 2, 3sylancr 414 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. ) ) )
5 df-ov 5891 . . 3  |-  ( A D B )  =  ( D `  <. A ,  B >. )
6 cnmetdval.1 . . . 4  |-  D  =  ( abs  o.  -  )
76fveq1i 5528 . . 3  |-  ( D `
 <. A ,  B >. )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
85, 7eqtri 2208 . 2  |-  ( A D B )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
9 df-ov 5891 . . 3  |-  ( A  -  B )  =  (  -  `  <. A ,  B >. )
109fveq2i 5530 . 2  |-  ( abs `  ( A  -  B
) )  =  ( abs `  (  -  ` 
<. A ,  B >. ) )
114, 8, 103eqtr4g 2245 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   <.cop 3607    X. cxp 4636    o. ccom 4642   -->wf 5224   ` cfv 5228  (class class class)co 5888   CCcc 7822    - cmin 8141   abscabs 11019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-resscn 7916  ax-1cn 7917  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-sub 8143
This theorem is referenced by:  cnmet  14270  cnbl0  14274  cnblcld  14275  remetdval  14279  addcncntoplem  14291  divcnap  14295  cncfmet  14319  cnopnap  14334  limcimolemlt  14373  cnplimcim  14376  cnplimclemr  14378  limccnpcntop  14384  limccnp2lem  14385
  Copyright terms: Public domain W3C validator