| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmetdval | Unicode version | ||
| Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnmetdval.1 |
|
| Ref | Expression |
|---|---|
| cnmetdval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subf 8348 |
. . 3
| |
| 2 | opelxpi 4751 |
. . 3
| |
| 3 | fvco3 5705 |
. . 3
| |
| 4 | 1, 2, 3 | sylancr 414 |
. 2
|
| 5 | df-ov 6004 |
. . 3
| |
| 6 | cnmetdval.1 |
. . . 4
| |
| 7 | 6 | fveq1i 5628 |
. . 3
|
| 8 | 5, 7 | eqtri 2250 |
. 2
|
| 9 | df-ov 6004 |
. . 3
| |
| 10 | 9 | fveq2i 5630 |
. 2
|
| 11 | 4, 8, 10 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-sub 8319 |
| This theorem is referenced by: cnmet 15204 cnbl0 15208 cnblcld 15209 remetdval 15221 addcncntoplem 15235 divcnap 15239 cncfmet 15266 cnopnap 15285 limcimolemlt 15338 cnplimcim 15341 cnplimclemr 15343 limccnpcntop 15349 limccnp2lem 15350 |
| Copyright terms: Public domain | W3C validator |