ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmco Unicode version

Theorem rhmco 13806
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
rhmco  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S RingHom  U ) )

Proof of Theorem rhmco
StepHypRef Expression
1 rhmrcl2 13788 . . 3  |-  ( F  e.  ( T RingHom  U
)  ->  U  e.  Ring )
2 rhmrcl1 13787 . . 3  |-  ( G  e.  ( S RingHom  T
)  ->  S  e.  Ring )
31, 2anim12ci 339 . 2  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( S  e.  Ring  /\  U  e.  Ring ) )
4 rhmghm 13794 . . . 4  |-  ( F  e.  ( T RingHom  U
)  ->  F  e.  ( T  GrpHom  U ) )
5 rhmghm 13794 . . . 4  |-  ( G  e.  ( S RingHom  T
)  ->  G  e.  ( S  GrpHom  T ) )
6 ghmco 13470 . . . 4  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
74, 5, 6syl2an 289 . . 3  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
8 eqid 2196 . . . . 5  |-  (mulGrp `  T )  =  (mulGrp `  T )
9 eqid 2196 . . . . 5  |-  (mulGrp `  U )  =  (mulGrp `  U )
108, 9rhmmhm 13791 . . . 4  |-  ( F  e.  ( T RingHom  U
)  ->  F  e.  ( (mulGrp `  T ) MndHom  (mulGrp `  U ) ) )
11 eqid 2196 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
1211, 8rhmmhm 13791 . . . 4  |-  ( G  e.  ( S RingHom  T
)  ->  G  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )
13 mhmco 13192 . . . 4  |-  ( ( F  e.  ( (mulGrp `  T ) MndHom  (mulGrp `  U ) )  /\  G  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  ->  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1410, 12, 13syl2an 289 . . 3  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
157, 14jca 306 . 2  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( ( F  o.  G )  e.  ( S  GrpHom  U )  /\  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
1611, 9isrhm 13790 . 2  |-  ( ( F  o.  G )  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  (
( F  o.  G
)  e.  ( S 
GrpHom  U )  /\  ( F  o.  G )  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
173, 15, 16sylanbrc 417 1  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S RingHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    o. ccom 4668   ` cfv 5259  (class class class)co 5925   MndHom cmhm 13159    GrpHom cghm 13446  mulGrpcmgp 13552   Ringcrg 13628   RingHom crh 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-ghm 13447  df-mgp 13553  df-ur 13592  df-ring 13630  df-rhm 13784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator