ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmco Unicode version

Theorem rhmco 14051
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
rhmco  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S RingHom  U ) )

Proof of Theorem rhmco
StepHypRef Expression
1 rhmrcl2 14033 . . 3  |-  ( F  e.  ( T RingHom  U
)  ->  U  e.  Ring )
2 rhmrcl1 14032 . . 3  |-  ( G  e.  ( S RingHom  T
)  ->  S  e.  Ring )
31, 2anim12ci 339 . 2  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( S  e.  Ring  /\  U  e.  Ring ) )
4 rhmghm 14039 . . . 4  |-  ( F  e.  ( T RingHom  U
)  ->  F  e.  ( T  GrpHom  U ) )
5 rhmghm 14039 . . . 4  |-  ( G  e.  ( S RingHom  T
)  ->  G  e.  ( S  GrpHom  T ) )
6 ghmco 13715 . . . 4  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
74, 5, 6syl2an 289 . . 3  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
8 eqid 2207 . . . . 5  |-  (mulGrp `  T )  =  (mulGrp `  T )
9 eqid 2207 . . . . 5  |-  (mulGrp `  U )  =  (mulGrp `  U )
108, 9rhmmhm 14036 . . . 4  |-  ( F  e.  ( T RingHom  U
)  ->  F  e.  ( (mulGrp `  T ) MndHom  (mulGrp `  U ) ) )
11 eqid 2207 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
1211, 8rhmmhm 14036 . . . 4  |-  ( G  e.  ( S RingHom  T
)  ->  G  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )
13 mhmco 13437 . . . 4  |-  ( ( F  e.  ( (mulGrp `  T ) MndHom  (mulGrp `  U ) )  /\  G  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  ->  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1410, 12, 13syl2an 289 . . 3  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
157, 14jca 306 . 2  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( ( F  o.  G )  e.  ( S  GrpHom  U )  /\  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
1611, 9isrhm 14035 . 2  |-  ( ( F  o.  G )  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  (
( F  o.  G
)  e.  ( S 
GrpHom  U )  /\  ( F  o.  G )  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
173, 15, 16sylanbrc 417 1  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S RingHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178    o. ccom 4697   ` cfv 5290  (class class class)co 5967   MndHom cmhm 13404    GrpHom cghm 13691  mulGrpcmgp 13797   Ringcrg 13873   RingHom crh 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mhm 13406  df-grp 13450  df-ghm 13692  df-mgp 13798  df-ur 13837  df-ring 13875  df-rhm 14029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator