ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmval Unicode version

Theorem rhmval 13805
Description: The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.)
Assertion
Ref Expression
rhmval  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )

Proof of Theorem rhmval
Dummy variables  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 13786 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
21a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  -> RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) ) )
3 oveq12 5934 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  GrpHom  s )  =  ( R  GrpHom  S ) )
4 fveq2 5561 . . . . 5  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
5 fveq2 5561 . . . . 5  |-  ( s  =  S  ->  (mulGrp `  s )  =  (mulGrp `  S ) )
64, 5oveqan12d 5944 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
73, 6ineq12d 3366 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) )  =  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
87adantl 277 . 2  |-  ( ( ( R  e.  Ring  /\  S  e.  Ring )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s
) ) )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
9 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  R  e.  Ring )
10 simpr 110 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  S  e.  Ring )
11 ringgrp 13633 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
12 ringgrp 13633 . . . 4  |-  ( S  e.  Ring  ->  S  e. 
Grp )
13 ghmex 13461 . . . 4  |-  ( ( R  e.  Grp  /\  S  e.  Grp )  ->  ( R  GrpHom  S )  e.  _V )
1411, 12, 13syl2an 289 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R  GrpHom  S )  e. 
_V )
15 inex1g 4170 . . 3  |-  ( ( R  GrpHom  S )  e. 
_V  ->  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  e.  _V )
1614, 15syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) )  e. 
_V )
172, 8, 9, 10, 16ovmpod 6054 1  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   MndHom cmhm 13159   Grpcgrp 13202    GrpHom cghm 13446  mulGrpcmgp 13552   Ringcrg 13628   RingHom crh 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-ghm 13447  df-mgp 13553  df-ur 13592  df-ring 13630  df-rhm 13784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator