ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmval Unicode version

Theorem rhmval 14131
Description: The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.)
Assertion
Ref Expression
rhmval  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )

Proof of Theorem rhmval
Dummy variables  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 14112 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
21a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  -> RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) ) )
3 oveq12 6009 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  GrpHom  s )  =  ( R  GrpHom  S ) )
4 fveq2 5626 . . . . 5  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
5 fveq2 5626 . . . . 5  |-  ( s  =  S  ->  (mulGrp `  s )  =  (mulGrp `  S ) )
64, 5oveqan12d 6019 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
73, 6ineq12d 3406 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) )  =  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
87adantl 277 . 2  |-  ( ( ( R  e.  Ring  /\  S  e.  Ring )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s
) ) )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
9 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  R  e.  Ring )
10 simpr 110 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  S  e.  Ring )
11 ringgrp 13959 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
12 ringgrp 13959 . . . 4  |-  ( S  e.  Ring  ->  S  e. 
Grp )
13 ghmex 13787 . . . 4  |-  ( ( R  e.  Grp  /\  S  e.  Grp )  ->  ( R  GrpHom  S )  e.  _V )
1411, 12, 13syl2an 289 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R  GrpHom  S )  e. 
_V )
15 inex1g 4219 . . 3  |-  ( ( R  GrpHom  S )  e. 
_V  ->  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  e.  _V )
1614, 15syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) )  e. 
_V )
172, 8, 9, 10, 16ovmpod 6131 1  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   MndHom cmhm 13485   Grpcgrp 13528    GrpHom cghm 13772  mulGrpcmgp 13878   Ringcrg 13954   RingHom crh 14108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-grp 13531  df-ghm 13773  df-mgp 13879  df-ur 13918  df-ring 13956  df-rhm 14110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator