ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmco GIF version

Theorem rhmco 14132
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
rhmco ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 RingHom 𝑈))

Proof of Theorem rhmco
StepHypRef Expression
1 rhmrcl2 14114 . . 3 (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝑈 ∈ Ring)
2 rhmrcl1 14113 . . 3 (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring)
31, 2anim12ci 339 . 2 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring))
4 rhmghm 14120 . . . 4 (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
5 rhmghm 14120 . . . 4 (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
6 ghmco 13796 . . . 4 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
74, 5, 6syl2an 289 . . 3 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
8 eqid 2229 . . . . 5 (mulGrp‘𝑇) = (mulGrp‘𝑇)
9 eqid 2229 . . . . 5 (mulGrp‘𝑈) = (mulGrp‘𝑈)
108, 9rhmmhm 14117 . . . 4 (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)))
11 eqid 2229 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1211, 8rhmmhm 14117 . . . 4 (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
13 mhmco 13518 . . . 4 ((𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
1410, 12, 13syl2an 289 . . 3 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
157, 14jca 306 . 2 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
1611, 9isrhm 14116 . 2 ((𝐹𝐺) ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
173, 15, 16sylanbrc 417 1 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 RingHom 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  ccom 4722  cfv 5317  (class class class)co 6000   MndHom cmhm 13485   GrpHom cghm 13772  mulGrpcmgp 13878  Ringcrg 13954   RingHom crh 14108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-grp 13531  df-ghm 13773  df-mgp 13879  df-ur 13918  df-ring 13956  df-rhm 14110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator