![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rhmco | GIF version |
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
rhmco | ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl2 13531 | . . 3 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝑈 ∈ Ring) | |
2 | rhmrcl1 13530 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
3 | 1, 2 | anim12ci 339 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)) |
4 | rhmghm 13537 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) | |
5 | rhmghm 13537 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
6 | ghmco 13228 | . . . 4 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
7 | 4, 5, 6 | syl2an 289 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
8 | eqid 2189 | . . . . 5 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
9 | eqid 2189 | . . . . 5 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
10 | 8, 9 | rhmmhm 13534 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈))) |
11 | eqid 2189 | . . . . 5 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
12 | 11, 8 | rhmmhm 13534 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
13 | mhmco 12965 | . . . 4 ⊢ ((𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) | |
14 | 10, 12, 13 | syl2an 289 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) |
15 | 7, 14 | jca 306 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
16 | 11, 9 | isrhm 13533 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
17 | 3, 15, 16 | sylanbrc 417 | 1 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 ∘ ccom 4651 ‘cfv 5238 (class class class)co 5900 MndHom cmhm 12932 GrpHom cghm 13204 mulGrpcmgp 13299 Ringcrg 13375 RingHom crh 13525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-map 6680 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-plusg 12613 df-mulr 12614 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-mhm 12934 df-grp 12971 df-ghm 13205 df-mgp 13300 df-ur 13339 df-ring 13377 df-rhm 13527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |