| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rhmdvdsr | Unicode version | ||
| Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| rhmdvdsr.x |
|
| rhmdvdsr.m |
|
| rhmdvdsr.n |
|
| Ref | Expression |
|---|---|
| rhmdvdsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 |
. . 3
| |
| 2 | simpl2 1003 |
. . 3
| |
| 3 | rhmdvdsr.x |
. . . . 5
| |
| 4 | eqid 2196 |
. . . . 5
| |
| 5 | 3, 4 | rhmf 13795 |
. . . 4
|
| 6 | 5 | ffvelcdmda 5700 |
. . 3
|
| 7 | 1, 2, 6 | syl2anc 411 |
. 2
|
| 8 | simpll1 1038 |
. . . . . 6
| |
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | 5 | ffvelcdmda 5700 |
. . . . . 6
|
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . 5
|
| 12 | 11 | ralrimiva 2570 |
. . . 4
|
| 13 | 2 | adantr 276 |
. . . . . . 7
|
| 14 | eqid 2196 |
. . . . . . . 8
| |
| 15 | eqid 2196 |
. . . . . . . 8
| |
| 16 | 3, 14, 15 | rhmmul 13796 |
. . . . . . 7
|
| 17 | 8, 9, 13, 16 | syl3anc 1249 |
. . . . . 6
|
| 18 | 17 | ralrimiva 2570 |
. . . . 5
|
| 19 | simpr 110 |
. . . . . 6
| |
| 20 | 3 | a1i 9 |
. . . . . . 7
|
| 21 | rhmdvdsr.m |
. . . . . . . 8
| |
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | rhmrcl1 13787 |
. . . . . . . . . 10
| |
| 24 | 23 | 3ad2ant1 1020 |
. . . . . . . . 9
|
| 25 | 24 | adantr 276 |
. . . . . . . 8
|
| 26 | ringsrg 13679 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 14 |
. . . . . . 7
|
| 28 | eqidd 2197 |
. . . . . . 7
| |
| 29 | 20, 22, 27, 28, 2 | dvdsr2d 13727 |
. . . . . 6
|
| 30 | 19, 29 | mpbid 147 |
. . . . 5
|
| 31 | r19.29 2634 |
. . . . . 6
| |
| 32 | simpl 109 |
. . . . . . . 8
| |
| 33 | simpr 110 |
. . . . . . . . 9
| |
| 34 | 33 | fveq2d 5565 |
. . . . . . . 8
|
| 35 | 32, 34 | eqtr3d 2231 |
. . . . . . 7
|
| 36 | 35 | reximi 2594 |
. . . . . 6
|
| 37 | 31, 36 | syl 14 |
. . . . 5
|
| 38 | 18, 30, 37 | syl2anc 411 |
. . . 4
|
| 39 | r19.29 2634 |
. . . 4
| |
| 40 | 12, 38, 39 | syl2anc 411 |
. . 3
|
| 41 | oveq1 5932 |
. . . . . 6
| |
| 42 | 41 | eqeq1d 2205 |
. . . . 5
|
| 43 | 42 | rspcev 2868 |
. . . 4
|
| 44 | 43 | rexlimivw 2610 |
. . 3
|
| 45 | 40, 44 | syl 14 |
. 2
|
| 46 | eqidd 2197 |
. . 3
| |
| 47 | rhmdvdsr.n |
. . . 4
| |
| 48 | 47 | a1i 9 |
. . 3
|
| 49 | rhmrcl2 13788 |
. . . . . 6
| |
| 50 | 49 | 3ad2ant1 1020 |
. . . . 5
|
| 51 | 50 | adantr 276 |
. . . 4
|
| 52 | ringsrg 13679 |
. . . 4
| |
| 53 | 51, 52 | syl 14 |
. . 3
|
| 54 | eqidd 2197 |
. . 3
| |
| 55 | 46, 48, 53, 54 | dvdsrd 13726 |
. 2
|
| 56 | 7, 45, 55 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mhm 13161 df-grp 13205 df-minusg 13206 df-ghm 13447 df-cmn 13492 df-abl 13493 df-mgp 13553 df-ur 13592 df-srg 13596 df-ring 13630 df-dvdsr 13721 df-rhm 13784 |
| This theorem is referenced by: elrhmunit 13809 |
| Copyright terms: Public domain | W3C validator |