| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rhmdvdsr | Unicode version | ||
| Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| rhmdvdsr.x | 
 | 
| rhmdvdsr.m | 
 | 
| rhmdvdsr.n | 
 | 
| Ref | Expression | 
|---|---|
| rhmdvdsr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl1 1002 | 
. . 3
 | |
| 2 | simpl2 1003 | 
. . 3
 | |
| 3 | rhmdvdsr.x | 
. . . . 5
 | |
| 4 | eqid 2196 | 
. . . . 5
 | |
| 5 | 3, 4 | rhmf 13719 | 
. . . 4
 | 
| 6 | 5 | ffvelcdmda 5697 | 
. . 3
 | 
| 7 | 1, 2, 6 | syl2anc 411 | 
. 2
 | 
| 8 | simpll1 1038 | 
. . . . . 6
 | |
| 9 | simpr 110 | 
. . . . . 6
 | |
| 10 | 5 | ffvelcdmda 5697 | 
. . . . . 6
 | 
| 11 | 8, 9, 10 | syl2anc 411 | 
. . . . 5
 | 
| 12 | 11 | ralrimiva 2570 | 
. . . 4
 | 
| 13 | 2 | adantr 276 | 
. . . . . . 7
 | 
| 14 | eqid 2196 | 
. . . . . . . 8
 | |
| 15 | eqid 2196 | 
. . . . . . . 8
 | |
| 16 | 3, 14, 15 | rhmmul 13720 | 
. . . . . . 7
 | 
| 17 | 8, 9, 13, 16 | syl3anc 1249 | 
. . . . . 6
 | 
| 18 | 17 | ralrimiva 2570 | 
. . . . 5
 | 
| 19 | simpr 110 | 
. . . . . 6
 | |
| 20 | 3 | a1i 9 | 
. . . . . . 7
 | 
| 21 | rhmdvdsr.m | 
. . . . . . . 8
 | |
| 22 | 21 | a1i 9 | 
. . . . . . 7
 | 
| 23 | rhmrcl1 13711 | 
. . . . . . . . . 10
 | |
| 24 | 23 | 3ad2ant1 1020 | 
. . . . . . . . 9
 | 
| 25 | 24 | adantr 276 | 
. . . . . . . 8
 | 
| 26 | ringsrg 13603 | 
. . . . . . . 8
 | |
| 27 | 25, 26 | syl 14 | 
. . . . . . 7
 | 
| 28 | eqidd 2197 | 
. . . . . . 7
 | |
| 29 | 20, 22, 27, 28, 2 | dvdsr2d 13651 | 
. . . . . 6
 | 
| 30 | 19, 29 | mpbid 147 | 
. . . . 5
 | 
| 31 | r19.29 2634 | 
. . . . . 6
 | |
| 32 | simpl 109 | 
. . . . . . . 8
 | |
| 33 | simpr 110 | 
. . . . . . . . 9
 | |
| 34 | 33 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 35 | 32, 34 | eqtr3d 2231 | 
. . . . . . 7
 | 
| 36 | 35 | reximi 2594 | 
. . . . . 6
 | 
| 37 | 31, 36 | syl 14 | 
. . . . 5
 | 
| 38 | 18, 30, 37 | syl2anc 411 | 
. . . 4
 | 
| 39 | r19.29 2634 | 
. . . 4
 | |
| 40 | 12, 38, 39 | syl2anc 411 | 
. . 3
 | 
| 41 | oveq1 5929 | 
. . . . . 6
 | |
| 42 | 41 | eqeq1d 2205 | 
. . . . 5
 | 
| 43 | 42 | rspcev 2868 | 
. . . 4
 | 
| 44 | 43 | rexlimivw 2610 | 
. . 3
 | 
| 45 | 40, 44 | syl 14 | 
. 2
 | 
| 46 | eqidd 2197 | 
. . 3
 | |
| 47 | rhmdvdsr.n | 
. . . 4
 | |
| 48 | 47 | a1i 9 | 
. . 3
 | 
| 49 | rhmrcl2 13712 | 
. . . . . 6
 | |
| 50 | 49 | 3ad2ant1 1020 | 
. . . . 5
 | 
| 51 | 50 | adantr 276 | 
. . . 4
 | 
| 52 | ringsrg 13603 | 
. . . 4
 | |
| 53 | 51, 52 | syl 14 | 
. . 3
 | 
| 54 | eqidd 2197 | 
. . 3
 | |
| 55 | 46, 48, 53, 54 | dvdsrd 13650 | 
. 2
 | 
| 56 | 7, 45, 55 | mpbir2and 946 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-grp 13135 df-minusg 13136 df-ghm 13371 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-dvdsr 13645 df-rhm 13708 | 
| This theorem is referenced by: elrhmunit 13733 | 
| Copyright terms: Public domain | W3C validator |