| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rhmdvdsr | Unicode version | ||
| Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| rhmdvdsr.x |
|
| rhmdvdsr.m |
|
| rhmdvdsr.n |
|
| Ref | Expression |
|---|---|
| rhmdvdsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 |
. . 3
| |
| 2 | simpl2 1025 |
. . 3
| |
| 3 | rhmdvdsr.x |
. . . . 5
| |
| 4 | eqid 2229 |
. . . . 5
| |
| 5 | 3, 4 | rhmf 14127 |
. . . 4
|
| 6 | 5 | ffvelcdmda 5770 |
. . 3
|
| 7 | 1, 2, 6 | syl2anc 411 |
. 2
|
| 8 | simpll1 1060 |
. . . . . 6
| |
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | 5 | ffvelcdmda 5770 |
. . . . . 6
|
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . 5
|
| 12 | 11 | ralrimiva 2603 |
. . . 4
|
| 13 | 2 | adantr 276 |
. . . . . . 7
|
| 14 | eqid 2229 |
. . . . . . . 8
| |
| 15 | eqid 2229 |
. . . . . . . 8
| |
| 16 | 3, 14, 15 | rhmmul 14128 |
. . . . . . 7
|
| 17 | 8, 9, 13, 16 | syl3anc 1271 |
. . . . . 6
|
| 18 | 17 | ralrimiva 2603 |
. . . . 5
|
| 19 | simpr 110 |
. . . . . 6
| |
| 20 | 3 | a1i 9 |
. . . . . . 7
|
| 21 | rhmdvdsr.m |
. . . . . . . 8
| |
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | rhmrcl1 14119 |
. . . . . . . . . 10
| |
| 24 | 23 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 25 | 24 | adantr 276 |
. . . . . . . 8
|
| 26 | ringsrg 14010 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 14 |
. . . . . . 7
|
| 28 | eqidd 2230 |
. . . . . . 7
| |
| 29 | 20, 22, 27, 28, 2 | dvdsr2d 14059 |
. . . . . 6
|
| 30 | 19, 29 | mpbid 147 |
. . . . 5
|
| 31 | r19.29 2668 |
. . . . . 6
| |
| 32 | simpl 109 |
. . . . . . . 8
| |
| 33 | simpr 110 |
. . . . . . . . 9
| |
| 34 | 33 | fveq2d 5631 |
. . . . . . . 8
|
| 35 | 32, 34 | eqtr3d 2264 |
. . . . . . 7
|
| 36 | 35 | reximi 2627 |
. . . . . 6
|
| 37 | 31, 36 | syl 14 |
. . . . 5
|
| 38 | 18, 30, 37 | syl2anc 411 |
. . . 4
|
| 39 | r19.29 2668 |
. . . 4
| |
| 40 | 12, 38, 39 | syl2anc 411 |
. . 3
|
| 41 | oveq1 6008 |
. . . . . 6
| |
| 42 | 41 | eqeq1d 2238 |
. . . . 5
|
| 43 | 42 | rspcev 2907 |
. . . 4
|
| 44 | 43 | rexlimivw 2644 |
. . 3
|
| 45 | 40, 44 | syl 14 |
. 2
|
| 46 | eqidd 2230 |
. . 3
| |
| 47 | rhmdvdsr.n |
. . . 4
| |
| 48 | 47 | a1i 9 |
. . 3
|
| 49 | rhmrcl2 14120 |
. . . . . 6
| |
| 50 | 49 | 3ad2ant1 1042 |
. . . . 5
|
| 51 | 50 | adantr 276 |
. . . 4
|
| 52 | ringsrg 14010 |
. . . 4
| |
| 53 | 51, 52 | syl 14 |
. . 3
|
| 54 | eqidd 2230 |
. . 3
| |
| 55 | 46, 48, 53, 54 | dvdsrd 14058 |
. 2
|
| 56 | 7, 45, 55 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-mhm 13492 df-grp 13536 df-minusg 13537 df-ghm 13778 df-cmn 13823 df-abl 13824 df-mgp 13884 df-ur 13923 df-srg 13927 df-ring 13961 df-dvdsr 14052 df-rhm 14116 |
| This theorem is referenced by: elrhmunit 14141 |
| Copyright terms: Public domain | W3C validator |