ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmdvdsr Unicode version

Theorem rhmdvdsr 14052
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvdsr.x  |-  X  =  ( Base `  R
)
rhmdvdsr.m  |-  .||  =  (
||r `  R )
rhmdvdsr.n  |-  ./  =  ( ||r `
 S )
Assertion
Ref Expression
rhmdvdsr  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( F `  A )  ./  ( F `  B
) )

Proof of Theorem rhmdvdsr
Dummy variables  y  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  F  e.  ( R RingHom  S )
)
2 simpl2 1004 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A  e.  X )
3 rhmdvdsr.x . . . . 5  |-  X  =  ( Base `  R
)
4 eqid 2207 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
53, 4rhmf 14040 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  F : X
--> ( Base `  S
) )
65ffvelcdmda 5738 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X )  ->  ( F `  A )  e.  ( Base `  S
) )
71, 2, 6syl2anc 411 . 2  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( F `  A )  e.  ( Base `  S
) )
8 simpll1 1039 . . . . . 6  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  F  e.  ( R RingHom  S ) )
9 simpr 110 . . . . . 6  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  c  e.  X )
105ffvelcdmda 5738 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  c  e.  X )  ->  ( F `  c )  e.  ( Base `  S
) )
118, 9, 10syl2anc 411 . . . . 5  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  ( F `  c )  e.  (
Base `  S )
)
1211ralrimiva 2581 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A. c  e.  X  ( F `  c )  e.  (
Base `  S )
)
132adantr 276 . . . . . . 7  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  A  e.  X )
14 eqid 2207 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
15 eqid 2207 . . . . . . . 8  |-  ( .r
`  S )  =  ( .r `  S
)
163, 14, 15rhmmul 14041 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  c  e.  X  /\  A  e.  X )  ->  ( F `  ( c
( .r `  R
) A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) ) )
178, 9, 13, 16syl3anc 1250 . . . . . 6  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) ) )
1817ralrimiva 2581 . . . . 5  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A. c  e.  X  ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) ) )
19 simpr 110 . . . . . 6  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A  .|| 
B )
203a1i 9 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  X  =  ( Base `  R
) )
21 rhmdvdsr.m . . . . . . . 8  |-  .||  =  (
||r `  R )
2221a1i 9 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  .||  =  (
||r `  R ) )
23 rhmrcl1 14032 . . . . . . . . . 10  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
24233ad2ant1 1021 . . . . . . . . 9  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  R  e.  Ring )
2524adantr 276 . . . . . . . 8  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  R  e.  Ring )
26 ringsrg 13924 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
2725, 26syl 14 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  R  e. SRing )
28 eqidd 2208 . . . . . . 7  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( .r `  R )  =  ( .r `  R
) )
2920, 22, 27, 28, 2dvdsr2d 13972 . . . . . 6  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( A  .||  B  <->  E. c  e.  X  ( c
( .r `  R
) A )  =  B ) )
3019, 29mpbid 147 . . . . 5  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. c  e.  X  ( c
( .r `  R
) A )  =  B )
31 r19.29 2645 . . . . . 6  |-  ( ( A. c  e.  X  ( F `  ( c ( .r `  R
) A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) )  /\  E. c  e.  X  (
c ( .r `  R ) A )  =  B )  ->  E. c  e.  X  ( ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) )  /\  ( c ( .r `  R ) A )  =  B ) )
32 simpl 109 . . . . . . . 8  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) ) )
33 simpr 110 . . . . . . . . 9  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( c ( .r `  R ) A )  =  B )
3433fveq2d 5603 . . . . . . . 8  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( F `  ( c ( .r
`  R ) A ) )  =  ( F `  B ) )
3532, 34eqtr3d 2242 . . . . . . 7  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( ( F `
 c ) ( .r `  S ) ( F `  A
) )  =  ( F `  B ) )
3635reximi 2605 . . . . . 6  |-  ( E. c  e.  X  ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  E. c  e.  X  ( ( F `  c ) ( .r
`  S ) ( F `  A ) )  =  ( F `
 B ) )
3731, 36syl 14 . . . . 5  |-  ( ( A. c  e.  X  ( F `  ( c ( .r `  R
) A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) )  /\  E. c  e.  X  (
c ( .r `  R ) A )  =  B )  ->  E. c  e.  X  ( ( F `  c ) ( .r
`  S ) ( F `  A ) )  =  ( F `
 B ) )
3818, 30, 37syl2anc 411 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. c  e.  X  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) )
39 r19.29 2645 . . . 4  |-  ( ( A. c  e.  X  ( F `  c )  e.  ( Base `  S
)  /\  E. c  e.  X  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) )  ->  E. c  e.  X  ( ( F `  c )  e.  ( Base `  S
)  /\  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) ) )
4012, 38, 39syl2anc 411 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. c  e.  X  ( ( F `  c )  e.  ( Base `  S
)  /\  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) ) )
41 oveq1 5974 . . . . . 6  |-  ( y  =  ( F `  c )  ->  (
y ( .r `  S ) ( F `
 A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) ) )
4241eqeq1d 2216 . . . . 5  |-  ( y  =  ( F `  c )  ->  (
( y ( .r
`  S ) ( F `  A ) )  =  ( F `
 B )  <->  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) ) )
4342rspcev 2884 . . . 4  |-  ( ( ( F `  c
)  e.  ( Base `  S )  /\  (
( F `  c
) ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )  ->  E. y  e.  ( Base `  S ) ( y ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )
4443rexlimivw 2621 . . 3  |-  ( E. c  e.  X  ( ( F `  c
)  e.  ( Base `  S )  /\  (
( F `  c
) ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )  ->  E. y  e.  ( Base `  S ) ( y ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )
4540, 44syl 14 . 2  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. y  e.  ( Base `  S
) ( y ( .r `  S ) ( F `  A
) )  =  ( F `  B ) )
46 eqidd 2208 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( Base `  S )  =  ( Base `  S
) )
47 rhmdvdsr.n . . . 4  |-  ./  =  ( ||r `
 S )
4847a1i 9 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ./  =  ( ||r `
 S ) )
49 rhmrcl2 14033 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
50493ad2ant1 1021 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  S  e.  Ring )
5150adantr 276 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  S  e.  Ring )
52 ringsrg 13924 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
5351, 52syl 14 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  S  e. SRing )
54 eqidd 2208 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( .r `  S )  =  ( .r `  S
) )
5546, 48, 53, 54dvdsrd 13971 . 2  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  (
( F `  A
)  ./  ( F `  B )  <->  ( ( F `  A )  e.  ( Base `  S
)  /\  E. y  e.  ( Base `  S
) ( y ( .r `  S ) ( F `  A
) )  =  ( F `  B ) ) ) )
567, 45, 55mpbir2and 947 1  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( F `  A )  ./  ( F `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025  SRingcsrg 13840   Ringcrg 13873   ||rcdsr 13963   RingHom crh 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mhm 13406  df-grp 13450  df-minusg 13451  df-ghm 13692  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-dvdsr 13966  df-rhm 14029
This theorem is referenced by:  elrhmunit  14054
  Copyright terms: Public domain W3C validator