| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rhmdvdsr | Unicode version | ||
| Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| rhmdvdsr.x |
|
| rhmdvdsr.m |
|
| rhmdvdsr.n |
|
| Ref | Expression |
|---|---|
| rhmdvdsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . 3
| |
| 2 | simpl2 1004 |
. . 3
| |
| 3 | rhmdvdsr.x |
. . . . 5
| |
| 4 | eqid 2207 |
. . . . 5
| |
| 5 | 3, 4 | rhmf 14040 |
. . . 4
|
| 6 | 5 | ffvelcdmda 5738 |
. . 3
|
| 7 | 1, 2, 6 | syl2anc 411 |
. 2
|
| 8 | simpll1 1039 |
. . . . . 6
| |
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | 5 | ffvelcdmda 5738 |
. . . . . 6
|
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . 5
|
| 12 | 11 | ralrimiva 2581 |
. . . 4
|
| 13 | 2 | adantr 276 |
. . . . . . 7
|
| 14 | eqid 2207 |
. . . . . . . 8
| |
| 15 | eqid 2207 |
. . . . . . . 8
| |
| 16 | 3, 14, 15 | rhmmul 14041 |
. . . . . . 7
|
| 17 | 8, 9, 13, 16 | syl3anc 1250 |
. . . . . 6
|
| 18 | 17 | ralrimiva 2581 |
. . . . 5
|
| 19 | simpr 110 |
. . . . . 6
| |
| 20 | 3 | a1i 9 |
. . . . . . 7
|
| 21 | rhmdvdsr.m |
. . . . . . . 8
| |
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | rhmrcl1 14032 |
. . . . . . . . . 10
| |
| 24 | 23 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 25 | 24 | adantr 276 |
. . . . . . . 8
|
| 26 | ringsrg 13924 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 14 |
. . . . . . 7
|
| 28 | eqidd 2208 |
. . . . . . 7
| |
| 29 | 20, 22, 27, 28, 2 | dvdsr2d 13972 |
. . . . . 6
|
| 30 | 19, 29 | mpbid 147 |
. . . . 5
|
| 31 | r19.29 2645 |
. . . . . 6
| |
| 32 | simpl 109 |
. . . . . . . 8
| |
| 33 | simpr 110 |
. . . . . . . . 9
| |
| 34 | 33 | fveq2d 5603 |
. . . . . . . 8
|
| 35 | 32, 34 | eqtr3d 2242 |
. . . . . . 7
|
| 36 | 35 | reximi 2605 |
. . . . . 6
|
| 37 | 31, 36 | syl 14 |
. . . . 5
|
| 38 | 18, 30, 37 | syl2anc 411 |
. . . 4
|
| 39 | r19.29 2645 |
. . . 4
| |
| 40 | 12, 38, 39 | syl2anc 411 |
. . 3
|
| 41 | oveq1 5974 |
. . . . . 6
| |
| 42 | 41 | eqeq1d 2216 |
. . . . 5
|
| 43 | 42 | rspcev 2884 |
. . . 4
|
| 44 | 43 | rexlimivw 2621 |
. . 3
|
| 45 | 40, 44 | syl 14 |
. 2
|
| 46 | eqidd 2208 |
. . 3
| |
| 47 | rhmdvdsr.n |
. . . 4
| |
| 48 | 47 | a1i 9 |
. . 3
|
| 49 | rhmrcl2 14033 |
. . . . . 6
| |
| 50 | 49 | 3ad2ant1 1021 |
. . . . 5
|
| 51 | 50 | adantr 276 |
. . . 4
|
| 52 | ringsrg 13924 |
. . . 4
| |
| 53 | 51, 52 | syl 14 |
. . 3
|
| 54 | eqidd 2208 |
. . 3
| |
| 55 | 46, 48, 53, 54 | dvdsrd 13971 |
. 2
|
| 56 | 7, 45, 55 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mhm 13406 df-grp 13450 df-minusg 13451 df-ghm 13692 df-cmn 13737 df-abl 13738 df-mgp 13798 df-ur 13837 df-srg 13841 df-ring 13875 df-dvdsr 13966 df-rhm 14029 |
| This theorem is referenced by: elrhmunit 14054 |
| Copyright terms: Public domain | W3C validator |