ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldexp Unicode version

Theorem cnfldexp 14065
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp  |-  ( ( A  e.  CC  /\  B  e.  NN0 )  -> 
( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B
) )

Proof of Theorem cnfldexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5925 . . . . 5  |-  ( x  =  0  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( 0 (.g `  (mulGrp ` fld ) ) A ) )
2 oveq2 5926 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
31, 2eqeq12d 2208 . . . 4  |-  ( x  =  0  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( 0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) ) )
43imbi2d 230 . . 3  |-  ( x  =  0  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( 0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) ) ) )
5 oveq1 5925 . . . . 5  |-  ( x  =  y  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( y (.g `  (mulGrp ` fld ) ) A ) )
6 oveq2 5926 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
75, 6eqeq12d 2208 . . . 4  |-  ( x  =  y  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) ) )
87imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( y
(.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) ) ) )
9 oveq1 5925 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A ) )
10 oveq2 5926 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
119, 10eqeq12d 2208 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) )
1211imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( (
y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) ) )
13 oveq1 5925 . . . . 5  |-  ( x  =  B  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( B (.g `  (mulGrp ` fld ) ) A ) )
14 oveq2 5926 . . . . 5  |-  ( x  =  B  ->  ( A ^ x )  =  ( A ^ B
) )
1513, 14eqeq12d 2208 . . . 4  |-  ( x  =  B  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) )
1615imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( B
(.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) ) )
17 cnfldex 14050 . . . . . 6  |-fld  e.  _V
18 eqid 2193 . . . . . . 7  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
19 cnfldbas 14051 . . . . . . 7  |-  CC  =  ( Base ` fld )
2018, 19mgpbasg 13422 . . . . . 6  |-  (fld  e.  _V  ->  CC  =  ( Base `  (mulGrp ` fld ) ) )
2117, 20ax-mp 5 . . . . 5  |-  CC  =  ( Base `  (mulGrp ` fld ) )
22 cnfld1 14060 . . . . . . 7  |-  1  =  ( 1r ` fld )
2318, 22ringidvalg 13457 . . . . . 6  |-  (fld  e.  _V  ->  1  =  ( 0g
`  (mulGrp ` fld ) ) )
2417, 23ax-mp 5 . . . . 5  |-  1  =  ( 0g `  (mulGrp ` fld ) )
25 eqid 2193 . . . . 5  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
2621, 24, 25mulg0 13195 . . . 4  |-  ( A  e.  CC  ->  (
0 (.g `  (mulGrp ` fld ) ) A )  =  1 )
27 exp0 10614 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2826, 27eqtr4d 2229 . . 3  |-  ( A  e.  CC  ->  (
0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) )
29 oveq1 5925 . . . . . 6  |-  ( ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y )  ->  (
( y (.g `  (mulGrp ` fld ) ) A )  x.  A )  =  ( ( A ^ y
)  x.  A ) )
30 cnring 14058 . . . . . . . . . 10  |-fld  e.  Ring
3118ringmgp 13498 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
(mulGrp ` fld )  e.  Mnd )
3230, 31ax-mp 5 . . . . . . . . 9  |-  (mulGrp ` fld )  e.  Mnd
33 cnfldmul 14054 . . . . . . . . . . . 12  |-  x.  =  ( .r ` fld )
3418, 33mgpplusgg 13420 . . . . . . . . . . 11  |-  (fld  e.  _V  ->  x.  =  ( +g  `  (mulGrp ` fld ) ) )
3517, 34ax-mp 5 . . . . . . . . . 10  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
3621, 25, 35mulgnn0p1 13203 . . . . . . . . 9  |-  ( ( (mulGrp ` fld )  e.  Mnd  /\  y  e.  NN0  /\  A  e.  CC )  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
3732, 36mp3an1 1335 . . . . . . . 8  |-  ( ( y  e.  NN0  /\  A  e.  CC )  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
3837ancoms 268 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
39 expp1 10617 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
4038, 39eqeq12d 2208 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) )  <->  ( (
y (.g `  (mulGrp ` fld ) ) A )  x.  A )  =  ( ( A ^
y )  x.  A
) ) )
4129, 40imbitrrid 156 . . . . 5  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y )  ->  (
( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) )
4241expcom 116 . . . 4  |-  ( y  e.  NN0  ->  ( A  e.  CC  ->  (
( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ y
)  ->  ( (
y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) ) )
4342a2d 26 . . 3  |-  ( y  e.  NN0  ->  ( ( A  e.  CC  ->  ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) )  -> 
( A  e.  CC  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ (
y  +  1 ) ) ) ) )
444, 8, 12, 16, 28, 43nn0ind 9431 . 2  |-  ( B  e.  NN0  ->  ( A  e.  CC  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) )
4544impcom 125 1  |-  ( ( A  e.  CC  /\  B  e.  NN0 )  -> 
( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877   NN0cn0 9240   ^cexp 10609   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997  .gcmg 13189  mulGrpcmgp 13416   Ringcrg 13492  ℂfldccnfld 14047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-starv 12710  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190  df-cmn 13356  df-mgp 13417  df-ur 13456  df-ring 13494  df-cring 13495  df-icnfld 14048
This theorem is referenced by:  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator