ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldexp Unicode version

Theorem cnfldexp 14209
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp  |-  ( ( A  e.  CC  /\  B  e.  NN0 )  -> 
( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B
) )

Proof of Theorem cnfldexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5932 . . . . 5  |-  ( x  =  0  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( 0 (.g `  (mulGrp ` fld ) ) A ) )
2 oveq2 5933 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
31, 2eqeq12d 2211 . . . 4  |-  ( x  =  0  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( 0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) ) )
43imbi2d 230 . . 3  |-  ( x  =  0  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( 0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) ) ) )
5 oveq1 5932 . . . . 5  |-  ( x  =  y  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( y (.g `  (mulGrp ` fld ) ) A ) )
6 oveq2 5933 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
75, 6eqeq12d 2211 . . . 4  |-  ( x  =  y  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) ) )
87imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( y
(.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) ) ) )
9 oveq1 5932 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A ) )
10 oveq2 5933 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
119, 10eqeq12d 2211 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) )
1211imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( (
y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) ) )
13 oveq1 5932 . . . . 5  |-  ( x  =  B  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( B (.g `  (mulGrp ` fld ) ) A ) )
14 oveq2 5933 . . . . 5  |-  ( x  =  B  ->  ( A ^ x )  =  ( A ^ B
) )
1513, 14eqeq12d 2211 . . . 4  |-  ( x  =  B  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) )
1615imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( B
(.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) ) )
17 cnfldex 14191 . . . . . 6  |-fld  e.  _V
18 eqid 2196 . . . . . . 7  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
19 cnfldbas 14192 . . . . . . 7  |-  CC  =  ( Base ` fld )
2018, 19mgpbasg 13558 . . . . . 6  |-  (fld  e.  _V  ->  CC  =  ( Base `  (mulGrp ` fld ) ) )
2117, 20ax-mp 5 . . . . 5  |-  CC  =  ( Base `  (mulGrp ` fld ) )
22 cnfld1 14204 . . . . . . 7  |-  1  =  ( 1r ` fld )
2318, 22ringidvalg 13593 . . . . . 6  |-  (fld  e.  _V  ->  1  =  ( 0g
`  (mulGrp ` fld ) ) )
2417, 23ax-mp 5 . . . . 5  |-  1  =  ( 0g `  (mulGrp ` fld ) )
25 eqid 2196 . . . . 5  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
2621, 24, 25mulg0 13331 . . . 4  |-  ( A  e.  CC  ->  (
0 (.g `  (mulGrp ` fld ) ) A )  =  1 )
27 exp0 10652 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2826, 27eqtr4d 2232 . . 3  |-  ( A  e.  CC  ->  (
0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) )
29 oveq1 5932 . . . . . 6  |-  ( ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y )  ->  (
( y (.g `  (mulGrp ` fld ) ) A )  x.  A )  =  ( ( A ^ y
)  x.  A ) )
30 cnring 14202 . . . . . . . . . 10  |-fld  e.  Ring
3118ringmgp 13634 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
(mulGrp ` fld )  e.  Mnd )
3230, 31ax-mp 5 . . . . . . . . 9  |-  (mulGrp ` fld )  e.  Mnd
33 cnfldmul 14196 . . . . . . . . . . . 12  |-  x.  =  ( .r ` fld )
3418, 33mgpplusgg 13556 . . . . . . . . . . 11  |-  (fld  e.  _V  ->  x.  =  ( +g  `  (mulGrp ` fld ) ) )
3517, 34ax-mp 5 . . . . . . . . . 10  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
3621, 25, 35mulgnn0p1 13339 . . . . . . . . 9  |-  ( ( (mulGrp ` fld )  e.  Mnd  /\  y  e.  NN0  /\  A  e.  CC )  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
3732, 36mp3an1 1335 . . . . . . . 8  |-  ( ( y  e.  NN0  /\  A  e.  CC )  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
3837ancoms 268 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
39 expp1 10655 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
4038, 39eqeq12d 2211 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) )  <->  ( (
y (.g `  (mulGrp ` fld ) ) A )  x.  A )  =  ( ( A ^
y )  x.  A
) ) )
4129, 40imbitrrid 156 . . . . 5  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y )  ->  (
( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) )
4241expcom 116 . . . 4  |-  ( y  e.  NN0  ->  ( A  e.  CC  ->  (
( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ y
)  ->  ( (
y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) ) )
4342a2d 26 . . 3  |-  ( y  e.  NN0  ->  ( ( A  e.  CC  ->  ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) )  -> 
( A  e.  CC  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ (
y  +  1 ) ) ) ) )
444, 8, 12, 16, 28, 43nn0ind 9457 . 2  |-  ( B  e.  NN0  ->  ( A  e.  CC  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) )
4544impcom 125 1  |-  ( ( A  e.  CC  /\  B  e.  NN0 )  -> 
( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   NN0cn0 9266   ^cexp 10647   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Mndcmnd 13118  .gcmg 13325  mulGrpcmgp 13552   Ringcrg 13628  ℂfldccnfld 14188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-abs 11181  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-starv 12795  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mulg 13326  df-cmn 13492  df-mgp 13553  df-ur 13592  df-ring 13630  df-cring 13631  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189
This theorem is referenced by:  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator