ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldexp Unicode version

Theorem cnfldexp 13474
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp  |-  ( ( A  e.  CC  /\  B  e.  NN0 )  -> 
( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B
) )

Proof of Theorem cnfldexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5882 . . . . 5  |-  ( x  =  0  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( 0 (.g `  (mulGrp ` fld ) ) A ) )
2 oveq2 5883 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
31, 2eqeq12d 2192 . . . 4  |-  ( x  =  0  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( 0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) ) )
43imbi2d 230 . . 3  |-  ( x  =  0  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( 0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) ) ) )
5 oveq1 5882 . . . . 5  |-  ( x  =  y  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( y (.g `  (mulGrp ` fld ) ) A ) )
6 oveq2 5883 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
75, 6eqeq12d 2192 . . . 4  |-  ( x  =  y  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) ) )
87imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( y
(.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) ) ) )
9 oveq1 5882 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A ) )
10 oveq2 5883 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
119, 10eqeq12d 2192 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) )
1211imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( (
y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) ) )
13 oveq1 5882 . . . . 5  |-  ( x  =  B  ->  (
x (.g `  (mulGrp ` fld ) ) A )  =  ( B (.g `  (mulGrp ` fld ) ) A ) )
14 oveq2 5883 . . . . 5  |-  ( x  =  B  ->  ( A ^ x )  =  ( A ^ B
) )
1513, 14eqeq12d 2192 . . . 4  |-  ( x  =  B  ->  (
( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
)  <->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) )
1615imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  CC  ->  ( x (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ x
) )  <->  ( A  e.  CC  ->  ( B
(.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) ) )
17 cnfldex 13461 . . . . . 6  |-fld  e.  _V
18 eqid 2177 . . . . . . 7  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
19 cnfldbas 13462 . . . . . . 7  |-  CC  =  ( Base ` fld )
2018, 19mgpbasg 13136 . . . . . 6  |-  (fld  e.  _V  ->  CC  =  ( Base `  (mulGrp ` fld ) ) )
2117, 20ax-mp 5 . . . . 5  |-  CC  =  ( Base `  (mulGrp ` fld ) )
22 cnfld1 13469 . . . . . . 7  |-  1  =  ( 1r ` fld )
2318, 22ringidvalg 13144 . . . . . 6  |-  (fld  e.  _V  ->  1  =  ( 0g
`  (mulGrp ` fld ) ) )
2417, 23ax-mp 5 . . . . 5  |-  1  =  ( 0g `  (mulGrp ` fld ) )
25 eqid 2177 . . . . 5  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
2621, 24, 25mulg0 12988 . . . 4  |-  ( A  e.  CC  ->  (
0 (.g `  (mulGrp ` fld ) ) A )  =  1 )
27 exp0 10524 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2826, 27eqtr4d 2213 . . 3  |-  ( A  e.  CC  ->  (
0 (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
0 ) )
29 oveq1 5882 . . . . . 6  |-  ( ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y )  ->  (
( y (.g `  (mulGrp ` fld ) ) A )  x.  A )  =  ( ( A ^ y
)  x.  A ) )
30 cnring 13467 . . . . . . . . . 10  |-fld  e.  Ring
3118ringmgp 13185 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
(mulGrp ` fld )  e.  Mnd )
3230, 31ax-mp 5 . . . . . . . . 9  |-  (mulGrp ` fld )  e.  Mnd
33 cnfldmul 13464 . . . . . . . . . . . 12  |-  x.  =  ( .r ` fld )
3418, 33mgpplusgg 13134 . . . . . . . . . . 11  |-  (fld  e.  _V  ->  x.  =  ( +g  `  (mulGrp ` fld ) ) )
3517, 34ax-mp 5 . . . . . . . . . 10  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
3621, 25, 35mulgnn0p1 12994 . . . . . . . . 9  |-  ( ( (mulGrp ` fld )  e.  Mnd  /\  y  e.  NN0  /\  A  e.  CC )  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
3732, 36mp3an1 1324 . . . . . . . 8  |-  ( ( y  e.  NN0  /\  A  e.  CC )  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
3837ancoms 268 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( ( y (.g `  (mulGrp ` fld ) ) A )  x.  A ) )
39 expp1 10527 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
4038, 39eqeq12d 2192 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) )  <->  ( (
y (.g `  (mulGrp ` fld ) ) A )  x.  A )  =  ( ( A ^
y )  x.  A
) ) )
4129, 40imbitrrid 156 . . . . 5  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y )  ->  (
( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) )
4241expcom 116 . . . 4  |-  ( y  e.  NN0  ->  ( A  e.  CC  ->  (
( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ y
)  ->  ( (
y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
( y  +  1 ) ) ) ) )
4342a2d 26 . . 3  |-  ( y  e.  NN0  ->  ( ( A  e.  CC  ->  ( y (.g `  (mulGrp ` fld ) ) A )  =  ( A ^
y ) )  -> 
( A  e.  CC  ->  ( ( y  +  1 ) (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ (
y  +  1 ) ) ) ) )
444, 8, 12, 16, 28, 43nn0ind 9367 . 2  |-  ( B  e.  NN0  ->  ( A  e.  CC  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) ) )
4544impcom 125 1  |-  ( ( A  e.  CC  /\  B  e.  NN0 )  -> 
( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2738   ` cfv 5217  (class class class)co 5875   CCcc 7809   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816   NN0cn0 9176   ^cexp 10519   Basecbs 12462   +g cplusg 12536   0gc0g 12705   Mndcmnd 12817  .gcmg 12983  mulGrpcmgp 13130   Ringcrg 13179  ℂfldccnfld 13458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-addf 7933  ax-mulf 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-tp 3601  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-9 8985  df-n0 9177  df-z 9254  df-dec 9385  df-uz 9529  df-fz 10009  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-struct 12464  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-starv 12551  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-mulg 12984  df-cmn 13090  df-mgp 13131  df-ur 13143  df-ring 13181  df-cring 13182  df-icnfld 13459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator