ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle3g Unicode version

Theorem strle3g 13055
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
strle2.j  |-  I  < 
J
strle2.k  |-  J  e.  NN
strle2.b  |-  B  =  J
strle3.k  |-  J  < 
K
strle3.l  |-  K  e.  NN
strle3.c  |-  C  =  K
Assertion
Ref Expression
strle3g  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )

Proof of Theorem strle3g
StepHypRef Expression
1 df-tp 3651 . 2  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. }  =  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } )
2 strle1.i . . . . 5  |-  I  e.  NN
3 strle1.a . . . . 5  |-  A  =  I
4 strle2.j . . . . 5  |-  I  < 
J
5 strle2.k . . . . 5  |-  J  e.  NN
6 strle2.b . . . . 5  |-  B  =  J
72, 3, 4, 5, 6strle2g 13054 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
873adant3 1020 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
9 strle3.l . . . . 5  |-  K  e.  NN
10 strle3.c . . . . 5  |-  C  =  K
119, 10strle1g 13053 . . . 4  |-  ( Z  e.  P  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
12113ad2ant3 1023 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
13 strle3.k . . . 4  |-  J  < 
K
1413a1i 9 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  J  <  K )
158, 12, 14strleund 13050 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } ) Struct  <. I ,  K >. )
161, 15eqbrtrid 4094 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178    u. cun 3172   {csn 3643   {cpr 3644   {ctp 3645   <.cop 3646   class class class wbr 4059    < clt 8142   NNcn 9071   Struct cstr 12943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-struct 12949
This theorem is referenced by:  rngstrg  13082  lmodstrd  13111  ipsstrd  13123  topgrpstrd  13143  imasvalstrd  13217  cnfldstr  14435  psrvalstrd  14545
  Copyright terms: Public domain W3C validator