Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strle3g | Unicode version |
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | |
strle1.a | |
strle2.j | |
strle2.k | |
strle2.b | |
strle3.k | |
strle3.l | |
strle3.c |
Ref | Expression |
---|---|
strle3g | Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3591 | . 2 | |
2 | strle1.i | . . . . 5 | |
3 | strle1.a | . . . . 5 | |
4 | strle2.j | . . . . 5 | |
5 | strle2.k | . . . . 5 | |
6 | strle2.b | . . . . 5 | |
7 | 2, 3, 4, 5, 6 | strle2g 12509 | . . . 4 Struct |
8 | 7 | 3adant3 1012 | . . 3 Struct |
9 | strle3.l | . . . . 5 | |
10 | strle3.c | . . . . 5 | |
11 | 9, 10 | strle1g 12508 | . . . 4 Struct |
12 | 11 | 3ad2ant3 1015 | . . 3 Struct |
13 | strle3.k | . . . 4 | |
14 | 13 | a1i 9 | . . 3 |
15 | 8, 12, 14 | strleund 12506 | . 2 Struct |
16 | 1, 15 | eqbrtrid 4024 | 1 Struct |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wcel 2141 cun 3119 csn 3583 cpr 3584 ctp 3585 cop 3586 class class class wbr 3989 clt 7954 cn 8878 Struct cstr 12412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-struct 12418 |
This theorem is referenced by: rngstrg 12533 lmodstrd 12551 ipsstrd 12559 topgrpstrd 12569 |
Copyright terms: Public domain | W3C validator |