ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle3g Unicode version

Theorem strle3g 13141
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
strle2.j  |-  I  < 
J
strle2.k  |-  J  e.  NN
strle2.b  |-  B  =  J
strle3.k  |-  J  < 
K
strle3.l  |-  K  e.  NN
strle3.c  |-  C  =  K
Assertion
Ref Expression
strle3g  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )

Proof of Theorem strle3g
StepHypRef Expression
1 df-tp 3674 . 2  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. }  =  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } )
2 strle1.i . . . . 5  |-  I  e.  NN
3 strle1.a . . . . 5  |-  A  =  I
4 strle2.j . . . . 5  |-  I  < 
J
5 strle2.k . . . . 5  |-  J  e.  NN
6 strle2.b . . . . 5  |-  B  =  J
72, 3, 4, 5, 6strle2g 13140 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
873adant3 1041 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
9 strle3.l . . . . 5  |-  K  e.  NN
10 strle3.c . . . . 5  |-  C  =  K
119, 10strle1g 13139 . . . 4  |-  ( Z  e.  P  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
12113ad2ant3 1044 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
13 strle3.k . . . 4  |-  J  < 
K
1413a1i 9 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  J  <  K )
158, 12, 14strleund 13136 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } ) Struct  <. I ,  K >. )
161, 15eqbrtrid 4118 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200    u. cun 3195   {csn 3666   {cpr 3667   {ctp 3668   <.cop 3669   class class class wbr 4083    < clt 8181   NNcn 9110   Struct cstr 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-struct 13034
This theorem is referenced by:  rngstrg  13168  lmodstrd  13197  ipsstrd  13209  topgrpstrd  13229  imasvalstrd  13303  cnfldstr  14522  psrvalstrd  14632
  Copyright terms: Public domain W3C validator