ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle3g Unicode version

Theorem strle3g 12726
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
strle2.j  |-  I  < 
J
strle2.k  |-  J  e.  NN
strle2.b  |-  B  =  J
strle3.k  |-  J  < 
K
strle3.l  |-  K  e.  NN
strle3.c  |-  C  =  K
Assertion
Ref Expression
strle3g  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )

Proof of Theorem strle3g
StepHypRef Expression
1 df-tp 3626 . 2  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. }  =  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } )
2 strle1.i . . . . 5  |-  I  e.  NN
3 strle1.a . . . . 5  |-  A  =  I
4 strle2.j . . . . 5  |-  I  < 
J
5 strle2.k . . . . 5  |-  J  e.  NN
6 strle2.b . . . . 5  |-  B  =  J
72, 3, 4, 5, 6strle2g 12725 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
873adant3 1019 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
9 strle3.l . . . . 5  |-  K  e.  NN
10 strle3.c . . . . 5  |-  C  =  K
119, 10strle1g 12724 . . . 4  |-  ( Z  e.  P  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
12113ad2ant3 1022 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
13 strle3.k . . . 4  |-  J  < 
K
1413a1i 9 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  J  <  K )
158, 12, 14strleund 12721 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } ) Struct  <. I ,  K >. )
161, 15eqbrtrid 4064 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164    u. cun 3151   {csn 3618   {cpr 3619   {ctp 3620   <.cop 3621   class class class wbr 4029    < clt 8054   NNcn 8982   Struct cstr 12614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-struct 12620
This theorem is referenced by:  rngstrg  12752  lmodstrd  12781  ipsstrd  12793  topgrpstrd  12813  psrvalstrd  14154
  Copyright terms: Public domain W3C validator