ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle3g Unicode version

Theorem strle3g 11946
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
strle2.j  |-  I  < 
J
strle2.k  |-  J  e.  NN
strle2.b  |-  B  =  J
strle3.k  |-  J  < 
K
strle3.l  |-  K  e.  NN
strle3.c  |-  C  =  K
Assertion
Ref Expression
strle3g  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )

Proof of Theorem strle3g
StepHypRef Expression
1 df-tp 3503 . 2  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. }  =  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } )
2 strle1.i . . . . 5  |-  I  e.  NN
3 strle1.a . . . . 5  |-  A  =  I
4 strle2.j . . . . 5  |-  I  < 
J
5 strle2.k . . . . 5  |-  J  e.  NN
6 strle2.b . . . . 5  |-  B  =  J
72, 3, 4, 5, 6strle2g 11945 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
873adant3 984 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
9 strle3.l . . . . 5  |-  K  e.  NN
10 strle3.c . . . . 5  |-  C  =  K
119, 10strle1g 11944 . . . 4  |-  ( Z  e.  P  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
12113ad2ant3 987 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. C ,  Z >. } Struct  <. K ,  K >. )
13 strle3.k . . . 4  |-  J  < 
K
1413a1i 9 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  J  <  K )
158, 12, 14strleund 11942 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  ( { <. A ,  X >. ,  <. B ,  Y >. }  u.  { <. C ,  Z >. } ) Struct  <. I ,  K >. )
161, 15eqbrtrid 3931 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 945    = wceq 1314    e. wcel 1463    u. cun 3037   {csn 3495   {cpr 3496   {ctp 3497   <.cop 3498   class class class wbr 3897    < clt 7764   NNcn 8677   Struct cstr 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-tp 3503  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-fz 9731  df-struct 11856
This theorem is referenced by:  rngstrg  11969  lmodstrd  11987  ipsstrd  11995  topgrpstrd  12005
  Copyright terms: Public domain W3C validator