ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negicn Unicode version

Theorem negicn 8113
Description:  -u _i is a complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
negicn  |-  -u _i  e.  CC

Proof of Theorem negicn
StepHypRef Expression
1 ax-icn 7862 . 2  |-  _i  e.  CC
2 negcl 8112 . 2  |-  ( _i  e.  CC  ->  -u _i  e.  CC )
31, 2ax-mp 5 1  |-  -u _i  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   CCcc 7765   _ici 7769   -ucneg 8084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519  ax-resscn 7859  ax-1cn 7860  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-sub 8085  df-neg 8086
This theorem is referenced by:  irec  10568  imcl  10811  absimle  11041  recan  11066  sinval  11658  cosval  11659  sinf  11660  cosf  11661  tanval2ap  11669  tanval3ap  11670  efi4p  11673  sinneg  11682  cosneg  11683  efival  11688  sinadd  11692  cosadd  11693  sincn  13449  coscn  13450  sinperlem  13488
  Copyright terms: Public domain W3C validator