Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negicn | Unicode version |
Description: is a complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
negicn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7862 | . 2 | |
2 | negcl 8112 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cc 7765 ci 7769 cneg 8084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-setind 4519 ax-resscn 7859 ax-1cn 7860 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-sub 8085 df-neg 8086 |
This theorem is referenced by: irec 10568 imcl 10811 absimle 11041 recan 11066 sinval 11658 cosval 11659 sinf 11660 cosf 11661 tanval2ap 11669 tanval3ap 11670 efi4p 11673 sinneg 11682 cosneg 11683 efival 11688 sinadd 11692 cosadd 11693 sincn 13449 coscn 13450 sinperlem 13488 |
Copyright terms: Public domain | W3C validator |