ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumrev2 Unicode version

Theorem fisumrev2 11589
Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fisumrev2.m  |-  ( ph  ->  M  e.  ZZ )
fisumrev2.n  |-  ( ph  ->  N  e.  ZZ )
fsumrev2.1  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumrev2.2  |-  ( j  =  ( ( M  +  N )  -  k )  ->  A  =  B )
Assertion
Ref Expression
fisumrev2  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N
) B )
Distinct variable groups:    A, k    B, j    j, k, M    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fisumrev2
StepHypRef Expression
1 fisumrev2.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
21adantr 276 . . . 4  |-  ( (
ph  /\  M  <_  N )  ->  M  e.  ZZ )
3 fisumrev2.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
43adantr 276 . . . 4  |-  ( (
ph  /\  M  <_  N )  ->  N  e.  ZZ )
5 simpr 110 . . . 4  |-  ( (
ph  /\  M  <_  N )  ->  M  <_  N )
6 eluz2 9598 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
72, 4, 5, 6syl3anbrc 1183 . . 3  |-  ( (
ph  /\  M  <_  N )  ->  N  e.  ( ZZ>= `  M )
)
81adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
93adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
108, 9zaddcld 9443 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( M  +  N )  e.  ZZ )
11 fsumrev2.1 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
1211adantlr 477 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  M )
)  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
13 fsumrev2.2 . . . . 5  |-  ( j  =  ( ( M  +  N )  -  k )  ->  A  =  B )
1410, 8, 9, 12, 13fsumrev 11586 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) ) B )
158zcnd 9440 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
169zcnd 9440 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
1715, 16pncand 8331 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( M  +  N )  -  N )  =  M )
1815, 16pncan2d 8332 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( M  +  N )  -  M )  =  N )
1917, 18oveq12d 5936 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) )  =  ( M ... N
) )
2019sumeq1d 11509 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  sum_ k  e.  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) ) B  =  sum_ k  e.  ( M ... N ) B )
2114, 20eqtrd 2226 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... N ) B )
227, 21syldan 282 . 2  |-  ( (
ph  /\  M  <_  N )  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... N ) B )
23 fzn 10108 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
241, 3, 23syl2anc 411 . . . 4  |-  ( ph  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
2524biimpa 296 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( M ... N )  =  (/) )
26 sum0 11531 . . . . 5  |-  sum_ j  e.  (/)  A  =  0
27 sum0 11531 . . . . 5  |-  sum_ k  e.  (/)  B  =  0
2826, 27eqtr4i 2217 . . . 4  |-  sum_ j  e.  (/)  A  =  sum_ k  e.  (/)  B
29 sumeq1 11498 . . . 4  |-  ( ( M ... N )  =  (/)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ j  e.  (/)  A )
30 sumeq1 11498 . . . 4  |-  ( ( M ... N )  =  (/)  ->  sum_ k  e.  ( M ... N
) B  =  sum_ k  e.  (/)  B )
3128, 29, 303eqtr4a 2252 . . 3  |-  ( ( M ... N )  =  (/)  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... N ) B )
3225, 31syl 14 . 2  |-  ( (
ph  /\  N  <  M )  ->  sum_ j  e.  ( M ... N
) A  =  sum_ k  e.  ( M ... N ) B )
33 zlelttric 9362 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  \/  N  <  M ) )
341, 3, 33syl2anc 411 . 2  |-  ( ph  ->  ( M  <_  N  \/  N  <  M ) )
3522, 32, 34mpjaodan 799 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   (/)c0 3446   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872    + caddc 7875    < clt 8054    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  fisum0diag2  11590  efaddlem  11817
  Copyright terms: Public domain W3C validator