ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1d Unicode version

Theorem sumeq1d 11307
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
Hypothesis
Ref Expression
sumeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sumeq1d  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, k    B, k
Allowed substitution hints:    ph( k)    C( k)

Proof of Theorem sumeq1d
StepHypRef Expression
1 sumeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sumeq1 11296 . 2  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
31, 2syl 14 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-seqfrec 10381  df-sumdc 11295
This theorem is referenced by:  sumeq12dv  11313  sumeq12rdv  11314  fsumf1o  11331  fisumss  11333  fsumcllem  11340  fsum1  11353  fzosump1  11358  fsump1  11361  fsum2d  11376  fisumcom2  11379  fsumshftm  11386  fisumrev2  11387  telfsumo  11407  telfsum  11409  telfsum2  11410  fsumparts  11411  fsumiun  11418  bcxmas  11430  isumsplit  11432  isum1p  11433  arisum  11439  arisum2  11440  geoserap  11448  geolim  11452  geo2sum2  11456  cvgratnnlemseq  11467  cvgratnnlemsumlt  11469  mertenslemub  11475  mertenslemi1  11476  mertenslem2  11477  mertensabs  11478  efcvgfsum  11608  eftlub  11631  effsumlt  11633  eirraplem  11717  pcfac  12280  cvgcmp2nlemabs  13911  trilpolemeq1  13919  nconstwlpolemgt0  13942
  Copyright terms: Public domain W3C validator