| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 |
|
| Ref | Expression |
|---|---|
| sumeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 |
. 2
| |
| 2 | sumeq1 11866 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-seqfrec 10670 df-sumdc 11865 |
| This theorem is referenced by: sumeq12dv 11883 sumeq12rdv 11884 fsumf1o 11901 fisumss 11903 fsumcllem 11910 fsum1 11923 fzosump1 11928 fsump1 11931 fsum2d 11946 fisumcom2 11949 fsumshftm 11956 fisumrev2 11957 telfsumo 11977 telfsum 11979 telfsum2 11980 fsumparts 11981 fsumiun 11988 bcxmas 12000 isumsplit 12002 isum1p 12003 arisum 12009 arisum2 12010 geoserap 12018 geolim 12022 geo2sum2 12026 cvgratnnlemseq 12037 cvgratnnlemsumlt 12039 mertenslemub 12045 mertenslemi1 12046 mertenslem2 12047 mertensabs 12048 efcvgfsum 12178 eftlub 12201 effsumlt 12203 eirraplem 12288 bitsinv1 12473 pcfac 12873 gsumfzfsumlem0 14550 gsumfzfsumlemm 14551 elplyr 15414 plycolemc 15432 dvply2g 15440 cvgcmp2nlemabs 16400 trilpolemeq1 16408 nconstwlpolemgt0 16432 |
| Copyright terms: Public domain | W3C validator |