![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sumeq1d | Unicode version |
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
Ref | Expression |
---|---|
sumeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sumeq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sumeq1 11498 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-seqfrec 10519 df-sumdc 11497 |
This theorem is referenced by: sumeq12dv 11515 sumeq12rdv 11516 fsumf1o 11533 fisumss 11535 fsumcllem 11542 fsum1 11555 fzosump1 11560 fsump1 11563 fsum2d 11578 fisumcom2 11581 fsumshftm 11588 fisumrev2 11589 telfsumo 11609 telfsum 11611 telfsum2 11612 fsumparts 11613 fsumiun 11620 bcxmas 11632 isumsplit 11634 isum1p 11635 arisum 11641 arisum2 11642 geoserap 11650 geolim 11654 geo2sum2 11658 cvgratnnlemseq 11669 cvgratnnlemsumlt 11671 mertenslemub 11677 mertenslemi1 11678 mertenslem2 11679 mertensabs 11680 efcvgfsum 11810 eftlub 11833 effsumlt 11835 eirraplem 11920 pcfac 12488 gsumfzfsumlem0 14074 gsumfzfsumlemm 14075 elplyr 14886 cvgcmp2nlemabs 15522 trilpolemeq1 15530 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |