| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 |
|
| Ref | Expression |
|---|---|
| sumeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 |
. 2
| |
| 2 | sumeq1 11699 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-recs 6393 df-frec 6479 df-seqfrec 10595 df-sumdc 11698 |
| This theorem is referenced by: sumeq12dv 11716 sumeq12rdv 11717 fsumf1o 11734 fisumss 11736 fsumcllem 11743 fsum1 11756 fzosump1 11761 fsump1 11764 fsum2d 11779 fisumcom2 11782 fsumshftm 11789 fisumrev2 11790 telfsumo 11810 telfsum 11812 telfsum2 11813 fsumparts 11814 fsumiun 11821 bcxmas 11833 isumsplit 11835 isum1p 11836 arisum 11842 arisum2 11843 geoserap 11851 geolim 11855 geo2sum2 11859 cvgratnnlemseq 11870 cvgratnnlemsumlt 11872 mertenslemub 11878 mertenslemi1 11879 mertenslem2 11880 mertensabs 11881 efcvgfsum 12011 eftlub 12034 effsumlt 12036 eirraplem 12121 bitsinv1 12306 pcfac 12706 gsumfzfsumlem0 14381 gsumfzfsumlemm 14382 elplyr 15245 plycolemc 15263 dvply2g 15271 cvgcmp2nlemabs 16008 trilpolemeq1 16016 nconstwlpolemgt0 16040 |
| Copyright terms: Public domain | W3C validator |