Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumeq1d | Unicode version |
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
Ref | Expression |
---|---|
sumeq1d.1 |
Ref | Expression |
---|---|
sumeq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1d.1 | . 2 | |
2 | sumeq1 11296 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 csu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 df-sumdc 11295 |
This theorem is referenced by: sumeq12dv 11313 sumeq12rdv 11314 fsumf1o 11331 fisumss 11333 fsumcllem 11340 fsum1 11353 fzosump1 11358 fsump1 11361 fsum2d 11376 fisumcom2 11379 fsumshftm 11386 fisumrev2 11387 telfsumo 11407 telfsum 11409 telfsum2 11410 fsumparts 11411 fsumiun 11418 bcxmas 11430 isumsplit 11432 isum1p 11433 arisum 11439 arisum2 11440 geoserap 11448 geolim 11452 geo2sum2 11456 cvgratnnlemseq 11467 cvgratnnlemsumlt 11469 mertenslemub 11475 mertenslemi1 11476 mertenslem2 11477 mertensabs 11478 efcvgfsum 11608 eftlub 11631 effsumlt 11633 eirraplem 11717 pcfac 12280 cvgcmp2nlemabs 13911 trilpolemeq1 13919 nconstwlpolemgt0 13942 |
Copyright terms: Public domain | W3C validator |