| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 |
|
| Ref | Expression |
|---|---|
| sumeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 |
. 2
| |
| 2 | sumeq1 11666 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-seqfrec 10593 df-sumdc 11665 |
| This theorem is referenced by: sumeq12dv 11683 sumeq12rdv 11684 fsumf1o 11701 fisumss 11703 fsumcllem 11710 fsum1 11723 fzosump1 11728 fsump1 11731 fsum2d 11746 fisumcom2 11749 fsumshftm 11756 fisumrev2 11757 telfsumo 11777 telfsum 11779 telfsum2 11780 fsumparts 11781 fsumiun 11788 bcxmas 11800 isumsplit 11802 isum1p 11803 arisum 11809 arisum2 11810 geoserap 11818 geolim 11822 geo2sum2 11826 cvgratnnlemseq 11837 cvgratnnlemsumlt 11839 mertenslemub 11845 mertenslemi1 11846 mertenslem2 11847 mertensabs 11848 efcvgfsum 11978 eftlub 12001 effsumlt 12003 eirraplem 12088 bitsinv1 12273 pcfac 12673 gsumfzfsumlem0 14348 gsumfzfsumlemm 14349 elplyr 15212 plycolemc 15230 dvply2g 15238 cvgcmp2nlemabs 15971 trilpolemeq1 15979 nconstwlpolemgt0 16003 |
| Copyright terms: Public domain | W3C validator |