| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 |
|
| Ref | Expression |
|---|---|
| sumeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 |
. 2
| |
| 2 | sumeq1 11781 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 df-sumdc 11780 |
| This theorem is referenced by: sumeq12dv 11798 sumeq12rdv 11799 fsumf1o 11816 fisumss 11818 fsumcllem 11825 fsum1 11838 fzosump1 11843 fsump1 11846 fsum2d 11861 fisumcom2 11864 fsumshftm 11871 fisumrev2 11872 telfsumo 11892 telfsum 11894 telfsum2 11895 fsumparts 11896 fsumiun 11903 bcxmas 11915 isumsplit 11917 isum1p 11918 arisum 11924 arisum2 11925 geoserap 11933 geolim 11937 geo2sum2 11941 cvgratnnlemseq 11952 cvgratnnlemsumlt 11954 mertenslemub 11960 mertenslemi1 11961 mertenslem2 11962 mertensabs 11963 efcvgfsum 12093 eftlub 12116 effsumlt 12118 eirraplem 12203 bitsinv1 12388 pcfac 12788 gsumfzfsumlem0 14463 gsumfzfsumlemm 14464 elplyr 15327 plycolemc 15345 dvply2g 15353 cvgcmp2nlemabs 16173 trilpolemeq1 16181 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |