![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sumeq1d | Unicode version |
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
Ref | Expression |
---|---|
sumeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sumeq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sumeq1 11501 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-frec 6446 df-seqfrec 10522 df-sumdc 11500 |
This theorem is referenced by: sumeq12dv 11518 sumeq12rdv 11519 fsumf1o 11536 fisumss 11538 fsumcllem 11545 fsum1 11558 fzosump1 11563 fsump1 11566 fsum2d 11581 fisumcom2 11584 fsumshftm 11591 fisumrev2 11592 telfsumo 11612 telfsum 11614 telfsum2 11615 fsumparts 11616 fsumiun 11623 bcxmas 11635 isumsplit 11637 isum1p 11638 arisum 11644 arisum2 11645 geoserap 11653 geolim 11657 geo2sum2 11661 cvgratnnlemseq 11672 cvgratnnlemsumlt 11674 mertenslemub 11680 mertenslemi1 11681 mertenslem2 11682 mertensabs 11683 efcvgfsum 11813 eftlub 11836 effsumlt 11838 eirraplem 11923 pcfac 12491 gsumfzfsumlem0 14085 gsumfzfsumlemm 14086 elplyr 14919 plycolemc 14936 cvgcmp2nlemabs 15592 trilpolemeq1 15600 nconstwlpolemgt0 15624 |
Copyright terms: Public domain | W3C validator |