ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgptopng Unicode version

Theorem mgptopng 13691
Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mgpbas.1  |-  M  =  (mulGrp `  R )
mgptopn.2  |-  J  =  ( TopOpen `  R )
Assertion
Ref Expression
mgptopng  |-  ( R  e.  V  ->  J  =  ( TopOpen `  M
) )

Proof of Theorem mgptopng
StepHypRef Expression
1 mgptopn.2 . . 3  |-  J  =  ( TopOpen `  R )
2 eqid 2205 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2205 . . . . 5  |-  (TopSet `  R )  =  (TopSet `  R )
42, 3topnvalg 13083 . . . 4  |-  ( R  e.  V  ->  (
(TopSet `  R )t  ( Base `  R ) )  =  ( TopOpen `  R
) )
5 mgpbas.1 . . . . . 6  |-  M  =  (mulGrp `  R )
65mgptsetg 13690 . . . . 5  |-  ( R  e.  V  ->  (TopSet `  R )  =  (TopSet `  M ) )
75, 2mgpbasg 13688 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
86, 7oveq12d 5962 . . . 4  |-  ( R  e.  V  ->  (
(TopSet `  R )t  ( Base `  R ) )  =  ( (TopSet `  M )t  ( Base `  M
) ) )
94, 8eqtr3d 2240 . . 3  |-  ( R  e.  V  ->  ( TopOpen
`  R )  =  ( (TopSet `  M
)t  ( Base `  M
) ) )
101, 9eqtrid 2250 . 2  |-  ( R  e.  V  ->  J  =  ( (TopSet `  M )t  ( Base `  M
) ) )
11 fnmgp 13684 . . . . 5  |- mulGrp  Fn  _V
12 elex 2783 . . . . 5  |-  ( R  e.  V  ->  R  e.  _V )
13 funfvex 5593 . . . . . 6  |-  ( ( Fun mulGrp  /\  R  e.  dom mulGrp )  ->  (mulGrp `  R )  e.  _V )
1413funfni 5376 . . . . 5  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp `  R )  e.  _V )
1511, 12, 14sylancr 414 . . . 4  |-  ( R  e.  V  ->  (mulGrp `  R )  e.  _V )
165, 15eqeltrid 2292 . . 3  |-  ( R  e.  V  ->  M  e.  _V )
17 eqid 2205 . . . 4  |-  ( Base `  M )  =  (
Base `  M )
18 eqid 2205 . . . 4  |-  (TopSet `  M )  =  (TopSet `  M )
1917, 18topnvalg 13083 . . 3  |-  ( M  e.  _V  ->  (
(TopSet `  M )t  ( Base `  M ) )  =  ( TopOpen `  M
) )
2016, 19syl 14 . 2  |-  ( R  e.  V  ->  (
(TopSet `  M )t  ( Base `  M ) )  =  ( TopOpen `  M
) )
2110, 20eqtrd 2238 1  |-  ( R  e.  V  ->  J  =  ( TopOpen `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832  TopSetcts 12915   ↾t crest 13071   TopOpenctopn 13072  mulGrpcmgp 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-tset 12928  df-rest 13073  df-topn 13074  df-mgp 13683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator