Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgptopng | Unicode version |
Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | mulGrp |
mgptopn.2 |
Ref | Expression |
---|---|
mgptopng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgptopn.2 | . . 3 | |
2 | eqid 2175 | . . . . 5 | |
3 | eqid 2175 | . . . . 5 TopSet TopSet | |
4 | 2, 3 | topnvalg 12621 | . . . 4 TopSet ↾t |
5 | mgpbas.1 | . . . . . 6 mulGrp | |
6 | 5 | mgptsetg 12932 | . . . . 5 TopSet TopSet |
7 | 5, 2 | mgpbasg 12930 | . . . . 5 |
8 | 6, 7 | oveq12d 5883 | . . . 4 TopSet ↾t TopSet ↾t |
9 | 4, 8 | eqtr3d 2210 | . . 3 TopSet ↾t |
10 | 1, 9 | eqtrid 2220 | . 2 TopSet ↾t |
11 | fnmgp 12927 | . . . . 5 mulGrp | |
12 | elex 2746 | . . . . 5 | |
13 | funfvex 5524 | . . . . . 6 mulGrp mulGrp mulGrp | |
14 | 13 | funfni 5308 | . . . . 5 mulGrp mulGrp |
15 | 11, 12, 14 | sylancr 414 | . . . 4 mulGrp |
16 | 5, 15 | eqeltrid 2262 | . . 3 |
17 | eqid 2175 | . . . 4 | |
18 | eqid 2175 | . . . 4 TopSet TopSet | |
19 | 17, 18 | topnvalg 12621 | . . 3 TopSet ↾t |
20 | 16, 19 | syl 14 | . 2 TopSet ↾t |
21 | 10, 20 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cvv 2735 wfn 5203 cfv 5208 (class class class)co 5865 cbs 12428 TopSetcts 12498 ↾t crest 12609 ctopn 12610 mulGrpcmgp 12925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 df-7 8954 df-8 8955 df-9 8956 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-tset 12511 df-rest 12611 df-topn 12612 df-mgp 12926 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |