| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnvalg | GIF version | ||
| Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
| Ref | Expression |
|---|---|
| topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
| Ref | Expression |
|---|---|
| topnvalg | ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 2 | restfn 13075 | . . . 4 ⊢ ↾t Fn (V × V) | |
| 3 | topnval.2 | . . . . 5 ⊢ 𝐽 = (TopSet‘𝑊) | |
| 4 | tsetslid 13020 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 5 | 4 | slotex 12859 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (TopSet‘𝑊) ∈ V) |
| 6 | 3, 5 | eqeltrid 2292 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐽 ∈ V) |
| 7 | topnval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 8 | baseslid 12889 | . . . . . 6 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 9 | 8 | slotex 12859 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑊) ∈ V) |
| 10 | 7, 9 | eqeltrid 2292 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐵 ∈ V) |
| 11 | fnovex 5977 | . . . 4 ⊢ (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽 ↾t 𝐵) ∈ V) | |
| 12 | 2, 6, 10, 11 | mp3an2i 1355 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) ∈ V) |
| 13 | fveq2 5576 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
| 14 | 13, 3 | eqtr4di 2256 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
| 15 | fveq2 5576 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 16 | 15, 7 | eqtr4di 2256 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 17 | 14, 16 | oveq12d 5962 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
| 18 | df-topn 13074 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
| 19 | 17, 18 | fvmptg 5655 | . . 3 ⊢ ((𝑊 ∈ V ∧ (𝐽 ↾t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 20 | 1, 12, 19 | syl2anc 411 | . 2 ⊢ (𝑊 ∈ 𝑉 → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 21 | 20 | eqcomd 2211 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 × cxp 4673 Fn wfn 5266 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 TopSetcts 12915 ↾t crest 13071 TopOpenctopn 13072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-ndx 12835 df-slot 12836 df-base 12838 df-tset 12928 df-rest 13073 df-topn 13074 |
| This theorem is referenced by: topnidg 13084 topnpropgd 13085 mgptopng 13691 |
| Copyright terms: Public domain | W3C validator |