Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topnvalg | GIF version |
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
Ref | Expression |
---|---|
topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
Ref | Expression |
---|---|
topnvalg | ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | restfn 12560 | . . . 4 ⊢ ↾t Fn (V × V) | |
3 | topnval.2 | . . . . 5 ⊢ 𝐽 = (TopSet‘𝑊) | |
4 | tsetslid 12545 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
5 | 4 | slotex 12421 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (TopSet‘𝑊) ∈ V) |
6 | 3, 5 | eqeltrid 2253 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐽 ∈ V) |
7 | topnval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
8 | baseslid 12450 | . . . . . 6 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
9 | 8 | slotex 12421 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑊) ∈ V) |
10 | 7, 9 | eqeltrid 2253 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐵 ∈ V) |
11 | fnovex 5875 | . . . 4 ⊢ (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽 ↾t 𝐵) ∈ V) | |
12 | 2, 6, 10, 11 | mp3an2i 1332 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) ∈ V) |
13 | fveq2 5486 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
14 | 13, 3 | eqtr4di 2217 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
15 | fveq2 5486 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
16 | 15, 7 | eqtr4di 2217 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
17 | 14, 16 | oveq12d 5860 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
18 | df-topn 12559 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
19 | 17, 18 | fvmptg 5562 | . . 3 ⊢ ((𝑊 ∈ V ∧ (𝐽 ↾t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
20 | 1, 12, 19 | syl2anc 409 | . 2 ⊢ (𝑊 ∈ 𝑉 → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
21 | 20 | eqcomd 2171 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 × cxp 4602 Fn wfn 5183 ‘cfv 5188 (class class class)co 5842 Basecbs 12394 TopSetcts 12463 ↾t crest 12556 TopOpenctopn 12557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-ndx 12397 df-slot 12398 df-base 12400 df-tset 12476 df-rest 12558 df-topn 12559 |
This theorem is referenced by: topnidg 12569 topnpropgd 12570 |
Copyright terms: Public domain | W3C validator |