| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnvalg | GIF version | ||
| Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
| Ref | Expression |
|---|---|
| topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
| Ref | Expression |
|---|---|
| topnvalg | ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 2 | restfn 12914 | . . . 4 ⊢ ↾t Fn (V × V) | |
| 3 | topnval.2 | . . . . 5 ⊢ 𝐽 = (TopSet‘𝑊) | |
| 4 | tsetslid 12865 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 5 | 4 | slotex 12705 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (TopSet‘𝑊) ∈ V) |
| 6 | 3, 5 | eqeltrid 2283 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐽 ∈ V) |
| 7 | topnval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 8 | baseslid 12735 | . . . . . 6 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 9 | 8 | slotex 12705 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑊) ∈ V) |
| 10 | 7, 9 | eqeltrid 2283 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐵 ∈ V) |
| 11 | fnovex 5955 | . . . 4 ⊢ (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽 ↾t 𝐵) ∈ V) | |
| 12 | 2, 6, 10, 11 | mp3an2i 1353 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) ∈ V) |
| 13 | fveq2 5558 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
| 14 | 13, 3 | eqtr4di 2247 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
| 15 | fveq2 5558 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 16 | 15, 7 | eqtr4di 2247 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 17 | 14, 16 | oveq12d 5940 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
| 18 | df-topn 12913 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
| 19 | 17, 18 | fvmptg 5637 | . . 3 ⊢ ((𝑊 ∈ V ∧ (𝐽 ↾t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 20 | 1, 12, 19 | syl2anc 411 | . 2 ⊢ (𝑊 ∈ 𝑉 → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 21 | 20 | eqcomd 2202 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 × cxp 4661 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 TopSetcts 12761 ↾t crest 12910 TopOpenctopn 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-ndx 12681 df-slot 12682 df-base 12684 df-tset 12774 df-rest 12912 df-topn 12913 |
| This theorem is referenced by: topnidg 12923 topnpropgd 12924 mgptopng 13485 |
| Copyright terms: Public domain | W3C validator |