![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topnvalg | GIF version |
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
Ref | Expression |
---|---|
topnval.1 | β’ π΅ = (Baseβπ) |
topnval.2 | β’ π½ = (TopSetβπ) |
Ref | Expression |
---|---|
topnvalg | β’ (π β π β (π½ βΎt π΅) = (TopOpenβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2750 | . . 3 β’ (π β π β π β V) | |
2 | restfn 12697 | . . . 4 β’ βΎt Fn (V Γ V) | |
3 | topnval.2 | . . . . 5 β’ π½ = (TopSetβπ) | |
4 | tsetslid 12648 | . . . . . 6 β’ (TopSet = Slot (TopSetβndx) β§ (TopSetβndx) β β) | |
5 | 4 | slotex 12491 | . . . . 5 β’ (π β π β (TopSetβπ) β V) |
6 | 3, 5 | eqeltrid 2264 | . . . 4 β’ (π β π β π½ β V) |
7 | topnval.1 | . . . . 5 β’ π΅ = (Baseβπ) | |
8 | baseslid 12521 | . . . . . 6 β’ (Base = Slot (Baseβndx) β§ (Baseβndx) β β) | |
9 | 8 | slotex 12491 | . . . . 5 β’ (π β π β (Baseβπ) β V) |
10 | 7, 9 | eqeltrid 2264 | . . . 4 β’ (π β π β π΅ β V) |
11 | fnovex 5910 | . . . 4 β’ (( βΎt Fn (V Γ V) β§ π½ β V β§ π΅ β V) β (π½ βΎt π΅) β V) | |
12 | 2, 6, 10, 11 | mp3an2i 1342 | . . 3 β’ (π β π β (π½ βΎt π΅) β V) |
13 | fveq2 5517 | . . . . . 6 β’ (π€ = π β (TopSetβπ€) = (TopSetβπ)) | |
14 | 13, 3 | eqtr4di 2228 | . . . . 5 β’ (π€ = π β (TopSetβπ€) = π½) |
15 | fveq2 5517 | . . . . . 6 β’ (π€ = π β (Baseβπ€) = (Baseβπ)) | |
16 | 15, 7 | eqtr4di 2228 | . . . . 5 β’ (π€ = π β (Baseβπ€) = π΅) |
17 | 14, 16 | oveq12d 5895 | . . . 4 β’ (π€ = π β ((TopSetβπ€) βΎt (Baseβπ€)) = (π½ βΎt π΅)) |
18 | df-topn 12696 | . . . 4 β’ TopOpen = (π€ β V β¦ ((TopSetβπ€) βΎt (Baseβπ€))) | |
19 | 17, 18 | fvmptg 5594 | . . 3 β’ ((π β V β§ (π½ βΎt π΅) β V) β (TopOpenβπ) = (π½ βΎt π΅)) |
20 | 1, 12, 19 | syl2anc 411 | . 2 β’ (π β π β (TopOpenβπ) = (π½ βΎt π΅)) |
21 | 20 | eqcomd 2183 | 1 β’ (π β π β (π½ βΎt π΅) = (TopOpenβπ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2739 Γ cxp 4626 Fn wfn 5213 βcfv 5218 (class class class)co 5877 Basecbs 12464 TopSetcts 12544 βΎt crest 12693 TopOpenctopn 12694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-ndx 12467 df-slot 12468 df-base 12470 df-tset 12557 df-rest 12695 df-topn 12696 |
This theorem is referenced by: topnidg 12706 topnpropgd 12707 mgptopng 13144 |
Copyright terms: Public domain | W3C validator |