| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnvalg | GIF version | ||
| Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
| Ref | Expression |
|---|---|
| topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
| Ref | Expression |
|---|---|
| topnvalg | ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 2 | restfn 13190 | . . . 4 ⊢ ↾t Fn (V × V) | |
| 3 | topnval.2 | . . . . 5 ⊢ 𝐽 = (TopSet‘𝑊) | |
| 4 | tsetslid 13135 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 5 | 4 | slotex 12974 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (TopSet‘𝑊) ∈ V) |
| 6 | 3, 5 | eqeltrid 2294 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐽 ∈ V) |
| 7 | topnval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 8 | baseslid 13004 | . . . . . 6 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 9 | 8 | slotex 12974 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑊) ∈ V) |
| 10 | 7, 9 | eqeltrid 2294 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐵 ∈ V) |
| 11 | fnovex 6000 | . . . 4 ⊢ (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽 ↾t 𝐵) ∈ V) | |
| 12 | 2, 6, 10, 11 | mp3an2i 1355 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) ∈ V) |
| 13 | fveq2 5599 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
| 14 | 13, 3 | eqtr4di 2258 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
| 15 | fveq2 5599 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 16 | 15, 7 | eqtr4di 2258 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 17 | 14, 16 | oveq12d 5985 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
| 18 | df-topn 13189 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
| 19 | 17, 18 | fvmptg 5678 | . . 3 ⊢ ((𝑊 ∈ V ∧ (𝐽 ↾t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 20 | 1, 12, 19 | syl2anc 411 | . 2 ⊢ (𝑊 ∈ 𝑉 → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 21 | 20 | eqcomd 2213 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 × cxp 4691 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 TopSetcts 13030 ↾t crest 13186 TopOpenctopn 13187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-ndx 12950 df-slot 12951 df-base 12953 df-tset 13043 df-rest 13188 df-topn 13189 |
| This theorem is referenced by: topnidg 13199 topnpropgd 13200 mgptopng 13806 |
| Copyright terms: Public domain | W3C validator |