Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topnvalg | GIF version |
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
Ref | Expression |
---|---|
topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
Ref | Expression |
---|---|
topnvalg | ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | restfn 12569 | . . . 4 ⊢ ↾t Fn (V × V) | |
3 | topnval.2 | . . . . 5 ⊢ 𝐽 = (TopSet‘𝑊) | |
4 | tsetslid 12554 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
5 | 4 | slotex 12430 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (TopSet‘𝑊) ∈ V) |
6 | 3, 5 | eqeltrid 2257 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐽 ∈ V) |
7 | topnval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
8 | baseslid 12459 | . . . . . 6 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
9 | 8 | slotex 12430 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑊) ∈ V) |
10 | 7, 9 | eqeltrid 2257 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝐵 ∈ V) |
11 | fnovex 5883 | . . . 4 ⊢ (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽 ↾t 𝐵) ∈ V) | |
12 | 2, 6, 10, 11 | mp3an2i 1337 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) ∈ V) |
13 | fveq2 5494 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
14 | 13, 3 | eqtr4di 2221 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
15 | fveq2 5494 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
16 | 15, 7 | eqtr4di 2221 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
17 | 14, 16 | oveq12d 5868 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
18 | df-topn 12568 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
19 | 17, 18 | fvmptg 5570 | . . 3 ⊢ ((𝑊 ∈ V ∧ (𝐽 ↾t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
20 | 1, 12, 19 | syl2anc 409 | . 2 ⊢ (𝑊 ∈ 𝑉 → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
21 | 20 | eqcomd 2176 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 × cxp 4607 Fn wfn 5191 ‘cfv 5196 (class class class)co 5850 Basecbs 12403 TopSetcts 12472 ↾t crest 12565 TopOpenctopn 12566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-7 8929 df-8 8930 df-9 8931 df-ndx 12406 df-slot 12407 df-base 12409 df-tset 12485 df-rest 12567 df-topn 12568 |
This theorem is referenced by: topnidg 12578 topnpropgd 12579 |
Copyright terms: Public domain | W3C validator |