ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnvalg GIF version

Theorem topnvalg 12591
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnvalg (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))

Proof of Theorem topnvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 2741 . . 3 (𝑊𝑉𝑊 ∈ V)
2 restfn 12583 . . . 4 t Fn (V × V)
3 topnval.2 . . . . 5 𝐽 = (TopSet‘𝑊)
4 tsetslid 12568 . . . . . 6 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
54slotex 12443 . . . . 5 (𝑊𝑉 → (TopSet‘𝑊) ∈ V)
63, 5eqeltrid 2257 . . . 4 (𝑊𝑉𝐽 ∈ V)
7 topnval.1 . . . . 5 𝐵 = (Base‘𝑊)
8 baseslid 12472 . . . . . 6 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
98slotex 12443 . . . . 5 (𝑊𝑉 → (Base‘𝑊) ∈ V)
107, 9eqeltrid 2257 . . . 4 (𝑊𝑉𝐵 ∈ V)
11 fnovex 5886 . . . 4 (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽t 𝐵) ∈ V)
122, 6, 10, 11mp3an2i 1337 . . 3 (𝑊𝑉 → (𝐽t 𝐵) ∈ V)
13 fveq2 5496 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
1413, 3eqtr4di 2221 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
15 fveq2 5496 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
1615, 7eqtr4di 2221 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
1714, 16oveq12d 5871 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
18 df-topn 12582 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
1917, 18fvmptg 5572 . . 3 ((𝑊 ∈ V ∧ (𝐽t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽t 𝐵))
201, 12, 19syl2anc 409 . 2 (𝑊𝑉 → (TopOpen‘𝑊) = (𝐽t 𝐵))
2120eqcomd 2176 1 (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730   × cxp 4609   Fn wfn 5193  cfv 5198  (class class class)co 5853  Basecbs 12416  TopSetcts 12486  t crest 12579  TopOpenctopn 12580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-ndx 12419  df-slot 12420  df-base 12422  df-tset 12499  df-rest 12581  df-topn 12582
This theorem is referenced by:  topnidg  12592  topnpropgd  12593
  Copyright terms: Public domain W3C validator