ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnvalg GIF version

Theorem topnvalg 11831
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnvalg (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))

Proof of Theorem topnvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 2644 . . 3 (𝑊𝑉𝑊 ∈ V)
2 restfn 11823 . . . 4 t Fn (V × V)
3 topnval.2 . . . . 5 𝐽 = (TopSet‘𝑊)
4 tsetslid 11808 . . . . . 6 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
54slotex 11685 . . . . 5 (𝑊𝑉 → (TopSet‘𝑊) ∈ V)
63, 5syl5eqel 2181 . . . 4 (𝑊𝑉𝐽 ∈ V)
7 topnval.1 . . . . 5 𝐵 = (Base‘𝑊)
8 baseslid 11714 . . . . . 6 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
98slotex 11685 . . . . 5 (𝑊𝑉 → (Base‘𝑊) ∈ V)
107, 9syl5eqel 2181 . . . 4 (𝑊𝑉𝐵 ∈ V)
11 fnovex 5720 . . . 4 (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽t 𝐵) ∈ V)
122, 6, 10, 11mp3an2i 1285 . . 3 (𝑊𝑉 → (𝐽t 𝐵) ∈ V)
13 fveq2 5340 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
1413, 3syl6eqr 2145 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
15 fveq2 5340 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
1615, 7syl6eqr 2145 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
1714, 16oveq12d 5708 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
18 df-topn 11822 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
1917, 18fvmptg 5415 . . 3 ((𝑊 ∈ V ∧ (𝐽t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽t 𝐵))
201, 12, 19syl2anc 404 . 2 (𝑊𝑉 → (TopOpen‘𝑊) = (𝐽t 𝐵))
2120eqcomd 2100 1 (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  wcel 1445  Vcvv 2633   × cxp 4465   Fn wfn 5044  cfv 5049  (class class class)co 5690  Basecbs 11658  TopSetcts 11726  t crest 11819  TopOpenctopn 11820
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-cnex 7533  ax-resscn 7534  ax-1re 7536  ax-addrcl 7539
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-5 8582  df-6 8583  df-7 8584  df-8 8585  df-9 8586  df-ndx 11661  df-slot 11662  df-base 11664  df-tset 11739  df-rest 11821  df-topn 11822
This theorem is referenced by:  topnidg  11832  topnpropgd  11833
  Copyright terms: Public domain W3C validator