ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnvalg GIF version

Theorem topnvalg 12577
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnvalg (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))

Proof of Theorem topnvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 2741 . . 3 (𝑊𝑉𝑊 ∈ V)
2 restfn 12569 . . . 4 t Fn (V × V)
3 topnval.2 . . . . 5 𝐽 = (TopSet‘𝑊)
4 tsetslid 12554 . . . . . 6 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
54slotex 12430 . . . . 5 (𝑊𝑉 → (TopSet‘𝑊) ∈ V)
63, 5eqeltrid 2257 . . . 4 (𝑊𝑉𝐽 ∈ V)
7 topnval.1 . . . . 5 𝐵 = (Base‘𝑊)
8 baseslid 12459 . . . . . 6 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
98slotex 12430 . . . . 5 (𝑊𝑉 → (Base‘𝑊) ∈ V)
107, 9eqeltrid 2257 . . . 4 (𝑊𝑉𝐵 ∈ V)
11 fnovex 5883 . . . 4 (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐵 ∈ V) → (𝐽t 𝐵) ∈ V)
122, 6, 10, 11mp3an2i 1337 . . 3 (𝑊𝑉 → (𝐽t 𝐵) ∈ V)
13 fveq2 5494 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
1413, 3eqtr4di 2221 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
15 fveq2 5494 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
1615, 7eqtr4di 2221 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
1714, 16oveq12d 5868 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
18 df-topn 12568 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
1917, 18fvmptg 5570 . . 3 ((𝑊 ∈ V ∧ (𝐽t 𝐵) ∈ V) → (TopOpen‘𝑊) = (𝐽t 𝐵))
201, 12, 19syl2anc 409 . 2 (𝑊𝑉 → (TopOpen‘𝑊) = (𝐽t 𝐵))
2120eqcomd 2176 1 (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730   × cxp 4607   Fn wfn 5191  cfv 5196  (class class class)co 5850  Basecbs 12403  TopSetcts 12472  t crest 12565  TopOpenctopn 12566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-cnex 7852  ax-resscn 7853  ax-1re 7855  ax-addrcl 7858
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-ndx 12406  df-slot 12407  df-base 12409  df-tset 12485  df-rest 12567  df-topn 12568
This theorem is referenced by:  topnidg  12578  topnpropgd  12579
  Copyright terms: Public domain W3C validator