ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind3 Unicode version

Theorem uzind3 9260
Description: Induction on the upper integers that start at an integer 
M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
Hypotheses
Ref Expression
uzind3.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind3.2  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
uzind3.3  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
uzind3.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind3.5  |-  ( M  e.  ZZ  ->  ps )
uzind3.6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
Assertion
Ref Expression
uzind3  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Distinct variable groups:    j, k, N    ps, j    ch, j    th, j    ta, j    ph, m    j, m, M, k
Allowed substitution hints:    ph( j, k)    ps( k, m)    ch( k, m)    th( k, m)    ta( k, m)    N( m)

Proof of Theorem uzind3
StepHypRef Expression
1 breq2 3969 . . 3  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
21elrab 2868 . 2  |-  ( N  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
3 uzind3.1 . . . 4  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
4 uzind3.2 . . . 4  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
5 uzind3.3 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
6 uzind3.4 . . . 4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
7 uzind3.5 . . . 4  |-  ( M  e.  ZZ  ->  ps )
8 breq2 3969 . . . . . . 7  |-  ( k  =  m  ->  ( M  <_  k  <->  M  <_  m ) )
98elrab 2868 . . . . . 6  |-  ( m  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( m  e.  ZZ  /\  M  <_  m ) )
10 uzind3.6 . . . . . 6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
119, 10sylan2br 286 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( m  e.  ZZ  /\  M  <_  m )
)  ->  ( ch  ->  th ) )
12113impb 1181 . . . 4  |-  ( ( M  e.  ZZ  /\  m  e.  ZZ  /\  M  <_  m )  ->  ( ch  ->  th ) )
133, 4, 5, 6, 7, 12uzind 9258 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
14133expb 1186 . 2  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  M  <_  N )
)  ->  ta )
152, 14sylan2b 285 1  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   {crab 2439   class class class wbr 3965  (class class class)co 5818   1c1 7716    + caddc 7718    <_ cle 7896   ZZcz 9150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-inn 8817  df-n0 9074  df-z 9151
This theorem is referenced by:  uzind4  9482  algfx  11909
  Copyright terms: Public domain W3C validator