ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind3 Unicode version

Theorem uzind3 9383
Description: Induction on the upper integers that start at an integer 
M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
Hypotheses
Ref Expression
uzind3.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind3.2  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
uzind3.3  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
uzind3.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind3.5  |-  ( M  e.  ZZ  ->  ps )
uzind3.6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
Assertion
Ref Expression
uzind3  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Distinct variable groups:    j, k, N    ps, j    ch, j    th, j    ta, j    ph, m    j, m, M, k
Allowed substitution hints:    ph( j, k)    ps( k, m)    ch( k, m)    th( k, m)    ta( k, m)    N( m)

Proof of Theorem uzind3
StepHypRef Expression
1 breq2 4021 . . 3  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
21elrab 2907 . 2  |-  ( N  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
3 uzind3.1 . . . 4  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
4 uzind3.2 . . . 4  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
5 uzind3.3 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
6 uzind3.4 . . . 4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
7 uzind3.5 . . . 4  |-  ( M  e.  ZZ  ->  ps )
8 breq2 4021 . . . . . . 7  |-  ( k  =  m  ->  ( M  <_  k  <->  M  <_  m ) )
98elrab 2907 . . . . . 6  |-  ( m  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( m  e.  ZZ  /\  M  <_  m ) )
10 uzind3.6 . . . . . 6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
119, 10sylan2br 288 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( m  e.  ZZ  /\  M  <_  m )
)  ->  ( ch  ->  th ) )
12113impb 1200 . . . 4  |-  ( ( M  e.  ZZ  /\  m  e.  ZZ  /\  M  <_  m )  ->  ( ch  ->  th ) )
133, 4, 5, 6, 7, 12uzind 9381 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
14133expb 1205 . 2  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  M  <_  N )
)  ->  ta )
152, 14sylan2b 287 1  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159   {crab 2471   class class class wbr 4017  (class class class)co 5890   1c1 7829    + caddc 7831    <_ cle 8010   ZZcz 9270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-iota 5192  df-fun 5232  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-inn 8937  df-n0 9194  df-z 9271
This theorem is referenced by:  uzind4  9605  algfx  12069
  Copyright terms: Public domain W3C validator