ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind3 Unicode version

Theorem uzind3 9118
Description: Induction on the upper integers that start at an integer 
M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
Hypotheses
Ref Expression
uzind3.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind3.2  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
uzind3.3  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
uzind3.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind3.5  |-  ( M  e.  ZZ  ->  ps )
uzind3.6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
Assertion
Ref Expression
uzind3  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Distinct variable groups:    j, k, N    ps, j    ch, j    th, j    ta, j    ph, m    j, m, M, k
Allowed substitution hints:    ph( j, k)    ps( k, m)    ch( k, m)    th( k, m)    ta( k, m)    N( m)

Proof of Theorem uzind3
StepHypRef Expression
1 breq2 3901 . . 3  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
21elrab 2811 . 2  |-  ( N  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
3 uzind3.1 . . . 4  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
4 uzind3.2 . . . 4  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
5 uzind3.3 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
6 uzind3.4 . . . 4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
7 uzind3.5 . . . 4  |-  ( M  e.  ZZ  ->  ps )
8 breq2 3901 . . . . . . 7  |-  ( k  =  m  ->  ( M  <_  k  <->  M  <_  m ) )
98elrab 2811 . . . . . 6  |-  ( m  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( m  e.  ZZ  /\  M  <_  m ) )
10 uzind3.6 . . . . . 6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
119, 10sylan2br 284 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( m  e.  ZZ  /\  M  <_  m )
)  ->  ( ch  ->  th ) )
12113impb 1160 . . . 4  |-  ( ( M  e.  ZZ  /\  m  e.  ZZ  /\  M  <_  m )  ->  ( ch  ->  th ) )
133, 4, 5, 6, 7, 12uzind 9116 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
14133expb 1165 . 2  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  M  <_  N )
)  ->  ta )
152, 14sylan2b 283 1  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   {crab 2395   class class class wbr 3897  (class class class)co 5740   1c1 7585    + caddc 7587    <_ cle 7765   ZZcz 9008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8681  df-n0 8932  df-z 9009
This theorem is referenced by:  uzind4  9335  algfx  11640
  Copyright terms: Public domain W3C validator