ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind3 Unicode version

Theorem uzind3 9439
Description: Induction on the upper integers that start at an integer 
M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
Hypotheses
Ref Expression
uzind3.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind3.2  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
uzind3.3  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
uzind3.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind3.5  |-  ( M  e.  ZZ  ->  ps )
uzind3.6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
Assertion
Ref Expression
uzind3  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Distinct variable groups:    j, k, N    ps, j    ch, j    th, j    ta, j    ph, m    j, m, M, k
Allowed substitution hints:    ph( j, k)    ps( k, m)    ch( k, m)    th( k, m)    ta( k, m)    N( m)

Proof of Theorem uzind3
StepHypRef Expression
1 breq2 4037 . . 3  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
21elrab 2920 . 2  |-  ( N  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
3 uzind3.1 . . . 4  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
4 uzind3.2 . . . 4  |-  ( j  =  m  ->  ( ph 
<->  ch ) )
5 uzind3.3 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  ( ph 
<->  th ) )
6 uzind3.4 . . . 4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
7 uzind3.5 . . . 4  |-  ( M  e.  ZZ  ->  ps )
8 breq2 4037 . . . . . . 7  |-  ( k  =  m  ->  ( M  <_  k  <->  M  <_  m ) )
98elrab 2920 . . . . . 6  |-  ( m  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( m  e.  ZZ  /\  M  <_  m ) )
10 uzind3.6 . . . . . 6  |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_ 
k } )  -> 
( ch  ->  th )
)
119, 10sylan2br 288 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( m  e.  ZZ  /\  M  <_  m )
)  ->  ( ch  ->  th ) )
12113impb 1201 . . . 4  |-  ( ( M  e.  ZZ  /\  m  e.  ZZ  /\  M  <_  m )  ->  ( ch  ->  th ) )
133, 4, 5, 6, 7, 12uzind 9437 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
14133expb 1206 . 2  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  M  <_  N )
)  ->  ta )
152, 14sylan2b 287 1  |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_ 
k } )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   class class class wbr 4033  (class class class)co 5922   1c1 7880    + caddc 7882    <_ cle 8062   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  uzind4  9662  algfx  12220
  Copyright terms: Public domain W3C validator