| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind3 | GIF version | ||
| Description: Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.) |
| Ref | Expression |
|---|---|
| uzind3.1 | ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) |
| uzind3.2 | ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) |
| uzind3.3 | ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) |
| uzind3.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
| uzind3.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
| uzind3.6 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| uzind3 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4038 | . . 3 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
| 2 | 1 | elrab 2920 | . 2 ⊢ (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 3 | uzind3.1 | . . . 4 ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) | |
| 4 | uzind3.2 | . . . 4 ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) | |
| 5 | uzind3.3 | . . . 4 ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) | |
| 6 | uzind3.4 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
| 7 | uzind3.5 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
| 8 | breq2 4038 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑚)) | |
| 9 | 8 | elrab 2920 | . . . . . 6 ⊢ (𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘} ↔ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚)) |
| 10 | uzind3.6 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) | |
| 11 | 9, 10 | sylan2br 288 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚)) → (𝜒 → 𝜃)) |
| 12 | 11 | 3impb 1201 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚) → (𝜒 → 𝜃)) |
| 13 | 3, 4, 5, 6, 7, 12 | uzind 9439 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) |
| 14 | 13 | 3expb 1206 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) → 𝜏) |
| 15 | 2, 14 | sylan2b 287 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4034 (class class class)co 5923 1c1 7882 + caddc 7884 ≤ cle 8064 ℤcz 9328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-n0 9252 df-z 9329 |
| This theorem is referenced by: uzind4 9664 algfx 12230 |
| Copyright terms: Public domain | W3C validator |