ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ind Unicode version

Theorem nn0ind 8850
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
Hypotheses
Ref Expression
nn0ind.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
nn0ind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nn0ind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nn0ind.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
nn0ind.5  |-  ps
nn0ind.6  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
Assertion
Ref Expression
nn0ind  |-  ( A  e.  NN0  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nn0ind
StepHypRef Expression
1 elnn0z 8753 . 2  |-  ( A  e.  NN0  <->  ( A  e.  ZZ  /\  0  <_  A ) )
2 0z 8751 . . 3  |-  0  e.  ZZ
3 nn0ind.1 . . . 4  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
4 nn0ind.2 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
5 nn0ind.3 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
6 nn0ind.4 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
7 nn0ind.5 . . . . 5  |-  ps
87a1i 9 . . . 4  |-  ( 0  e.  ZZ  ->  ps )
9 elnn0z 8753 . . . . . 6  |-  ( y  e.  NN0  <->  ( y  e.  ZZ  /\  0  <_ 
y ) )
10 nn0ind.6 . . . . . 6  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
119, 10sylbir 133 . . . . 5  |-  ( ( y  e.  ZZ  /\  0  <_  y )  -> 
( ch  ->  th )
)
12113adant1 961 . . . 4  |-  ( ( 0  e.  ZZ  /\  y  e.  ZZ  /\  0  <_  y )  ->  ( ch  ->  th ) )
133, 4, 5, 6, 8, 12uzind 8847 . . 3  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <_  A )  ->  ta )
142, 13mp3an1 1260 . 2  |-  ( ( A  e.  ZZ  /\  0  <_  A )  ->  ta )
151, 14sylbi 119 1  |-  ( A  e.  NN0  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   class class class wbr 3843  (class class class)co 5644   0cc0 7340   1c1 7341    + caddc 7343    <_ cle 7513   NN0cn0 8663   ZZcz 8740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-addcom 7435  ax-addass 7437  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-0id 7443  ax-rnegex 7444  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-ltadd 7451
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-br 3844  df-opab 3898  df-id 4118  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-iota 4975  df-fun 5012  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-inn 8413  df-n0 8664  df-z 8741
This theorem is referenced by:  zindd  8854  uzaddcl  9064  frecfzennn  9821  mulexp  9982  expadd  9985  expmul  9988  leexp1a  9998  bernneq  10062  faccl  10131  facdiv  10134  facwordi  10136  faclbnd  10137  faclbnd6  10140  facubnd  10141  bccl  10163  cjexp  10315  absexp  10500  binom  10865  bcxmas  10870  demoivreALT  11050  odd2np1lem  11137  ialginv  11294  prmfac1  11396
  Copyright terms: Public domain W3C validator