| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ind.1 |
|
| nn0ind.2 |
|
| nn0ind.3 |
|
| nn0ind.4 |
|
| nn0ind.5 |
|
| nn0ind.6 |
|
| Ref | Expression |
|---|---|
| nn0ind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 9420 |
. 2
| |
| 2 | 0z 9418 |
. . 3
| |
| 3 | nn0ind.1 |
. . . 4
| |
| 4 | nn0ind.2 |
. . . 4
| |
| 5 | nn0ind.3 |
. . . 4
| |
| 6 | nn0ind.4 |
. . . 4
| |
| 7 | nn0ind.5 |
. . . . 5
| |
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | elnn0z 9420 |
. . . . . 6
| |
| 10 | nn0ind.6 |
. . . . . 6
| |
| 11 | 9, 10 | sylbir 135 |
. . . . 5
|
| 12 | 11 | 3adant1 1018 |
. . . 4
|
| 13 | 3, 4, 5, 6, 8, 12 | uzind 9519 |
. . 3
|
| 14 | 2, 13 | mp3an1 1337 |
. 2
|
| 15 | 1, 14 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: zindd 9526 uzaddcl 9742 frecfzennn 10608 mulexp 10760 expadd 10763 expmul 10766 leexp1a 10776 bernneq 10842 modqexp 10848 nn0ltexp2 10891 faccl 10917 facdiv 10920 facwordi 10922 faclbnd 10923 faclbnd6 10926 facubnd 10927 bccl 10949 wrdind 11213 wrd2ind 11214 cjexp 11319 absexp 11505 binom 11910 bcxmas 11915 fprodfac 12041 demoivreALT 12200 odd2np1lem 12298 bitsinv1 12388 alginv 12484 prmfac1 12589 pcfac 12788 ennnfonelemhf1o 12899 mhmmulg 13614 srgmulgass 13866 srgpcomp 13867 lmodvsmmulgdi 14200 cnfldexp 14454 expcn 15156 expcncf 15196 plycolemc 15345 rpcxpmul2 15500 |
| Copyright terms: Public domain | W3C validator |