| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ind.1 |
|
| nn0ind.2 |
|
| nn0ind.3 |
|
| nn0ind.4 |
|
| nn0ind.5 |
|
| nn0ind.6 |
|
| Ref | Expression |
|---|---|
| nn0ind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 9387 |
. 2
| |
| 2 | 0z 9385 |
. . 3
| |
| 3 | nn0ind.1 |
. . . 4
| |
| 4 | nn0ind.2 |
. . . 4
| |
| 5 | nn0ind.3 |
. . . 4
| |
| 6 | nn0ind.4 |
. . . 4
| |
| 7 | nn0ind.5 |
. . . . 5
| |
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | elnn0z 9387 |
. . . . . 6
| |
| 10 | nn0ind.6 |
. . . . . 6
| |
| 11 | 9, 10 | sylbir 135 |
. . . . 5
|
| 12 | 11 | 3adant1 1018 |
. . . 4
|
| 13 | 3, 4, 5, 6, 8, 12 | uzind 9486 |
. . 3
|
| 14 | 2, 13 | mp3an1 1337 |
. 2
|
| 15 | 1, 14 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: zindd 9493 uzaddcl 9709 frecfzennn 10573 mulexp 10725 expadd 10728 expmul 10731 leexp1a 10741 bernneq 10807 modqexp 10813 nn0ltexp2 10856 faccl 10882 facdiv 10885 facwordi 10887 faclbnd 10888 faclbnd6 10891 facubnd 10892 bccl 10914 cjexp 11237 absexp 11423 binom 11828 bcxmas 11833 fprodfac 11959 demoivreALT 12118 odd2np1lem 12216 bitsinv1 12306 alginv 12402 prmfac1 12507 pcfac 12706 ennnfonelemhf1o 12817 mhmmulg 13532 srgmulgass 13784 srgpcomp 13785 lmodvsmmulgdi 14118 cnfldexp 14372 expcn 15074 expcncf 15114 plycolemc 15263 rpcxpmul2 15418 |
| Copyright terms: Public domain | W3C validator |