ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm0r GIF version

Theorem nnm0r 6383
Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnm0r (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)

Proof of Theorem nnm0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . 3 (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅))
21eqeq1d 2149 . 2 (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅))
3 oveq2 5790 . . 3 (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦))
43eqeq1d 2149 . 2 (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅))
5 oveq2 5790 . . 3 (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦))
65eqeq1d 2149 . 2 (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅))
7 oveq2 5790 . . 3 (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴))
87eqeq1d 2149 . 2 (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅))
9 0elon 4322 . . 3 ∅ ∈ On
10 om0 6362 . . 3 (∅ ∈ On → (∅ ·o ∅) = ∅)
119, 10ax-mp 5 . 2 (∅ ·o ∅) = ∅
12 oveq1 5789 . . . 4 ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))
13 oa0 6361 . . . . 5 (∅ ∈ On → (∅ +o ∅) = ∅)
149, 13ax-mp 5 . . . 4 (∅ +o ∅) = ∅
1512, 14eqtrdi 2189 . . 3 ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = ∅)
16 peano1 4516 . . . . 5 ∅ ∈ ω
17 nnmsuc 6381 . . . . 5 ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
1816, 17mpan 421 . . . 4 (𝑦 ∈ ω → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
1918eqeq1d 2149 . . 3 (𝑦 ∈ ω → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = ∅))
2015, 19syl5ibr 155 . 2 (𝑦 ∈ ω → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅))
212, 4, 6, 8, 11, 20finds 4522 1 (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  c0 3368  Oncon0 4293  suc csuc 4295  ωcom 4512  (class class class)co 5782   +o coa 6318   ·o comu 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326
This theorem is referenced by:  nnmcom  6393  nnmord  6421  nnm00  6433  enq0tr  7266  nq0m0r  7288
  Copyright terms: Public domain W3C validator