Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnm0r | GIF version |
Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnm0r | ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅)) | |
2 | 1 | eqeq1d 2174 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅)) |
3 | oveq2 5850 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦)) | |
4 | 3 | eqeq1d 2174 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅)) |
5 | oveq2 5850 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦)) | |
6 | 5 | eqeq1d 2174 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅)) |
7 | oveq2 5850 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴)) | |
8 | 7 | eqeq1d 2174 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅)) |
9 | 0elon 4370 | . . 3 ⊢ ∅ ∈ On | |
10 | om0 6426 | . . 3 ⊢ (∅ ∈ On → (∅ ·o ∅) = ∅) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·o ∅) = ∅ |
12 | oveq1 5849 | . . . 4 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)) | |
13 | oa0 6425 | . . . . 5 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
14 | 9, 13 | ax-mp 5 | . . . 4 ⊢ (∅ +o ∅) = ∅ |
15 | 12, 14 | eqtrdi 2215 | . . 3 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = ∅) |
16 | peano1 4571 | . . . . 5 ⊢ ∅ ∈ ω | |
17 | nnmsuc 6445 | . . . . 5 ⊢ ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) | |
18 | 16, 17 | mpan 421 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) |
19 | 18 | eqeq1d 2174 | . . 3 ⊢ (𝑦 ∈ ω → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = ∅)) |
20 | 15, 19 | syl5ibr 155 | . 2 ⊢ (𝑦 ∈ ω → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅)) |
21 | 2, 4, 6, 8, 11, 20 | finds 4577 | 1 ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∅c0 3409 Oncon0 4341 suc csuc 4343 ωcom 4567 (class class class)co 5842 +o coa 6381 ·o comu 6382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 |
This theorem is referenced by: nnmcom 6457 nnmord 6485 nnm00 6497 enq0tr 7375 nq0m0r 7397 |
Copyright terms: Public domain | W3C validator |