ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm0r GIF version

Theorem nnm0r 6375
Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnm0r (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)

Proof of Theorem nnm0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . 3 (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅))
21eqeq1d 2148 . 2 (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅))
3 oveq2 5782 . . 3 (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦))
43eqeq1d 2148 . 2 (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅))
5 oveq2 5782 . . 3 (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦))
65eqeq1d 2148 . 2 (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅))
7 oveq2 5782 . . 3 (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴))
87eqeq1d 2148 . 2 (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅))
9 0elon 4314 . . 3 ∅ ∈ On
10 om0 6354 . . 3 (∅ ∈ On → (∅ ·o ∅) = ∅)
119, 10ax-mp 5 . 2 (∅ ·o ∅) = ∅
12 oveq1 5781 . . . 4 ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))
13 oa0 6353 . . . . 5 (∅ ∈ On → (∅ +o ∅) = ∅)
149, 13ax-mp 5 . . . 4 (∅ +o ∅) = ∅
1512, 14syl6eq 2188 . . 3 ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = ∅)
16 peano1 4508 . . . . 5 ∅ ∈ ω
17 nnmsuc 6373 . . . . 5 ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
1816, 17mpan 420 . . . 4 (𝑦 ∈ ω → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
1918eqeq1d 2148 . . 3 (𝑦 ∈ ω → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = ∅))
2015, 19syl5ibr 155 . 2 (𝑦 ∈ ω → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅))
212, 4, 6, 8, 11, 20finds 4514 1 (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  c0 3363  Oncon0 4285  suc csuc 4287  ωcom 4504  (class class class)co 5774   +o coa 6310   ·o comu 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318
This theorem is referenced by:  nnmcom  6385  nnmord  6413  nnm00  6425  enq0tr  7242  nq0m0r  7264
  Copyright terms: Public domain W3C validator