![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnm0r | GIF version |
Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnm0r | ⊢ (𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5599 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·𝑜 𝑥) = (∅ ·𝑜 ∅)) | |
2 | 1 | eqeq1d 2091 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 ∅) = ∅)) |
3 | oveq2 5599 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝑦)) | |
4 | 3 | eqeq1d 2091 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝑦) = ∅)) |
5 | oveq2 5599 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 suc 𝑦)) | |
6 | 5 | eqeq1d 2091 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 suc 𝑦) = ∅)) |
7 | oveq2 5599 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝐴)) | |
8 | 7 | eqeq1d 2091 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝐴) = ∅)) |
9 | 0elon 4183 | . . 3 ⊢ ∅ ∈ On | |
10 | om0 6151 | . . 3 ⊢ (∅ ∈ On → (∅ ·𝑜 ∅) = ∅) | |
11 | 9, 10 | ax-mp 7 | . 2 ⊢ (∅ ·𝑜 ∅) = ∅ |
12 | oveq1 5598 | . . . 4 ⊢ ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = (∅ +𝑜 ∅)) | |
13 | oa0 6150 | . . . . 5 ⊢ (∅ ∈ On → (∅ +𝑜 ∅) = ∅) | |
14 | 9, 13 | ax-mp 7 | . . . 4 ⊢ (∅ +𝑜 ∅) = ∅ |
15 | 12, 14 | syl6eq 2131 | . . 3 ⊢ ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = ∅) |
16 | peano1 4372 | . . . . 5 ⊢ ∅ ∈ ω | |
17 | nnmsuc 6170 | . . . . 5 ⊢ ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅)) | |
18 | 16, 17 | mpan 415 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅)) |
19 | 18 | eqeq1d 2091 | . . 3 ⊢ (𝑦 ∈ ω → ((∅ ·𝑜 suc 𝑦) = ∅ ↔ ((∅ ·𝑜 𝑦) +𝑜 ∅) = ∅)) |
20 | 15, 19 | syl5ibr 154 | . 2 ⊢ (𝑦 ∈ ω → ((∅ ·𝑜 𝑦) = ∅ → (∅ ·𝑜 suc 𝑦) = ∅)) |
21 | 2, 4, 6, 8, 11, 20 | finds 4378 | 1 ⊢ (𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 ∅c0 3269 Oncon0 4154 suc csuc 4156 ωcom 4368 (class class class)co 5591 +𝑜 coa 6110 ·𝑜 comu 6111 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4084 df-iord 4157 df-on 4159 df-suc 4162 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-recs 6002 df-irdg 6067 df-oadd 6117 df-omul 6118 |
This theorem is referenced by: nnmcom 6182 nnmord 6206 nnm00 6218 enq0tr 6896 nq0m0r 6918 |
Copyright terms: Public domain | W3C validator |