| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm0r | GIF version | ||
| Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnm0r | ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6015 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅)) | |
| 2 | 1 | eqeq1d 2238 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅)) |
| 3 | oveq2 6015 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦)) | |
| 4 | 3 | eqeq1d 2238 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅)) |
| 5 | oveq2 6015 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦)) | |
| 6 | 5 | eqeq1d 2238 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅)) |
| 7 | oveq2 6015 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴)) | |
| 8 | 7 | eqeq1d 2238 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅)) |
| 9 | 0elon 4483 | . . 3 ⊢ ∅ ∈ On | |
| 10 | om0 6612 | . . 3 ⊢ (∅ ∈ On → (∅ ·o ∅) = ∅) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·o ∅) = ∅ |
| 12 | oveq1 6014 | . . . 4 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)) | |
| 13 | oa0 6611 | . . . . 5 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 14 | 9, 13 | ax-mp 5 | . . . 4 ⊢ (∅ +o ∅) = ∅ |
| 15 | 12, 14 | eqtrdi 2278 | . . 3 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = ∅) |
| 16 | peano1 4686 | . . . . 5 ⊢ ∅ ∈ ω | |
| 17 | nnmsuc 6631 | . . . . 5 ⊢ ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) | |
| 18 | 16, 17 | mpan 424 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) |
| 19 | 18 | eqeq1d 2238 | . . 3 ⊢ (𝑦 ∈ ω → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = ∅)) |
| 20 | 15, 19 | imbitrrid 156 | . 2 ⊢ (𝑦 ∈ ω → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅)) |
| 21 | 2, 4, 6, 8, 11, 20 | finds 4692 | 1 ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∅c0 3491 Oncon0 4454 suc csuc 4456 ωcom 4682 (class class class)co 6007 +o coa 6565 ·o comu 6566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 df-omul 6573 |
| This theorem is referenced by: nnmcom 6643 nnmord 6671 nnm00 6684 enq0tr 7629 nq0m0r 7651 |
| Copyright terms: Public domain | W3C validator |