| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm0r | GIF version | ||
| Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnm0r | ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5959 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅)) | |
| 2 | 1 | eqeq1d 2215 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅)) |
| 3 | oveq2 5959 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦)) | |
| 4 | 3 | eqeq1d 2215 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅)) |
| 5 | oveq2 5959 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦)) | |
| 6 | 5 | eqeq1d 2215 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅)) |
| 7 | oveq2 5959 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴)) | |
| 8 | 7 | eqeq1d 2215 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅)) |
| 9 | 0elon 4443 | . . 3 ⊢ ∅ ∈ On | |
| 10 | om0 6551 | . . 3 ⊢ (∅ ∈ On → (∅ ·o ∅) = ∅) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·o ∅) = ∅ |
| 12 | oveq1 5958 | . . . 4 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)) | |
| 13 | oa0 6550 | . . . . 5 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 14 | 9, 13 | ax-mp 5 | . . . 4 ⊢ (∅ +o ∅) = ∅ |
| 15 | 12, 14 | eqtrdi 2255 | . . 3 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = ∅) |
| 16 | peano1 4646 | . . . . 5 ⊢ ∅ ∈ ω | |
| 17 | nnmsuc 6570 | . . . . 5 ⊢ ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) | |
| 18 | 16, 17 | mpan 424 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) |
| 19 | 18 | eqeq1d 2215 | . . 3 ⊢ (𝑦 ∈ ω → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = ∅)) |
| 20 | 15, 19 | imbitrrid 156 | . 2 ⊢ (𝑦 ∈ ω → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅)) |
| 21 | 2, 4, 6, 8, 11, 20 | finds 4652 | 1 ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∅c0 3461 Oncon0 4414 suc csuc 4416 ωcom 4642 (class class class)co 5951 +o coa 6506 ·o comu 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-omul 6514 |
| This theorem is referenced by: nnmcom 6582 nnmord 6610 nnm00 6623 enq0tr 7554 nq0m0r 7576 |
| Copyright terms: Public domain | W3C validator |