![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > om0 | GIF version |
Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
om0 | ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4228 | . . 3 ⊢ ∅ ∈ On | |
2 | omv 6230 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) | |
3 | 1, 2 | mpan2 417 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) |
4 | 0ex 3972 | . . 3 ⊢ ∅ ∈ V | |
5 | 4 | rdg0 6166 | . 2 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅) = ∅ |
6 | 3, 5 | syl6eq 2137 | 1 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 Vcvv 2620 ∅c0 3287 ↦ cmpt 3905 Oncon0 4199 ‘cfv 5028 (class class class)co 5666 reccrdg 6148 +o coa 6192 ·o comu 6193 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-iord 4202 df-on 4204 df-suc 4207 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-irdg 6149 df-oadd 6199 df-omul 6200 |
This theorem is referenced by: nnm0 6250 nnm0r 6254 |
Copyright terms: Public domain | W3C validator |