ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omcl GIF version

Theorem omcl 6440
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
omcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)

Proof of Theorem omcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omv 6434 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
2 0elon 4377 . . . 4 ∅ ∈ On
32a1i 9 . . 3 (𝐴 ∈ On → ∅ ∈ On)
4 vex 2733 . . . . . . 7 𝑦 ∈ V
5 oacl 6439 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 +o 𝐴) ∈ On)
6 oveq1 5860 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 +o 𝐴) = (𝑦 +o 𝐴))
7 eqid 2170 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
86, 7fvmptg 5572 . . . . . . 7 ((𝑦 ∈ V ∧ (𝑦 +o 𝐴) ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) = (𝑦 +o 𝐴))
94, 5, 8sylancr 412 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) = (𝑦 +o 𝐴))
109, 5eqeltrd 2247 . . . . 5 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) ∈ On)
1110ancoms 266 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) ∈ On)
1211ralrimiva 2543 . . 3 (𝐴 ∈ On → ∀𝑦 ∈ On ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) ∈ On)
133, 12rdgon 6365 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ On)
141, 13eqeltrd 2247 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  c0 3414  cmpt 4050  Oncon0 4348  cfv 5198  (class class class)co 5853  reccrdg 6348   +o coa 6392   ·o comu 6393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400
This theorem is referenced by:  oeicl  6441  omv2  6444  omsuc  6451
  Copyright terms: Public domain W3C validator