ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omcl GIF version

Theorem omcl 6516
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
omcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)

Proof of Theorem omcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omv 6510 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
2 0elon 4424 . . . 4 ∅ ∈ On
32a1i 9 . . 3 (𝐴 ∈ On → ∅ ∈ On)
4 vex 2763 . . . . . . 7 𝑦 ∈ V
5 oacl 6515 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 +o 𝐴) ∈ On)
6 oveq1 5926 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 +o 𝐴) = (𝑦 +o 𝐴))
7 eqid 2193 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
86, 7fvmptg 5634 . . . . . . 7 ((𝑦 ∈ V ∧ (𝑦 +o 𝐴) ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) = (𝑦 +o 𝐴))
94, 5, 8sylancr 414 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) = (𝑦 +o 𝐴))
109, 5eqeltrd 2270 . . . . 5 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) ∈ On)
1110ancoms 268 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) ∈ On)
1211ralrimiva 2567 . . 3 (𝐴 ∈ On → ∀𝑦 ∈ On ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘𝑦) ∈ On)
133, 12rdgon 6441 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ On)
141, 13eqeltrd 2270 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  c0 3447  cmpt 4091  Oncon0 4395  cfv 5255  (class class class)co 5919  reccrdg 6424   +o coa 6468   ·o comu 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476
This theorem is referenced by:  oeicl  6517  omv2  6520  omsuc  6527
  Copyright terms: Public domain W3C validator