ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oa0 GIF version

Theorem oa0 6304
Description: Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oa0 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)

Proof of Theorem oa0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 4272 . . 3 ∅ ∈ On
2 oav 6301 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅))
31, 2mpan2 419 . 2 (𝐴 ∈ On → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅))
4 rdg0g 6236 . 2 (𝐴 ∈ On → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅) = 𝐴)
53, 4eqtrd 2145 1 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1312  wcel 1461  Vcvv 2655  c0 3327  cmpt 3947  Oncon0 4243  suc csuc 4245  cfv 5079  (class class class)co 5726  reccrdg 6217   +o coa 6261
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-recs 6153  df-irdg 6218  df-oadd 6268
This theorem is referenced by:  oa1suc  6314  oaword1  6318  nna0  6321  nna0r  6325  nnm0r  6326
  Copyright terms: Public domain W3C validator