ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oei0 GIF version

Theorem oei0 6514
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oei0 (𝐴 ∈ On → (𝐴o ∅) = 1o)

Proof of Theorem oei0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 4424 . . 3 ∅ ∈ On
2 oeiv 6511 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
31, 2mpan2 425 . 2 (𝐴 ∈ On → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
4 1on 6478 . . 3 1o ∈ On
5 rdg0g 6443 . . 3 (1o ∈ On → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o)
64, 5ax-mp 5 . 2 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
73, 6eqtrdi 2242 1 (𝐴 ∈ On → (𝐴o ∅) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  c0 3447  cmpt 4091  Oncon0 4395  cfv 5255  (class class class)co 5919  reccrdg 6424  1oc1o 6464   ·o comu 6469  o coei 6470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-oexpi 6477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator