ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baseslid GIF version

Theorem baseslid 12288
Description: The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.)
Assertion
Ref Expression
baseslid (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)

Proof of Theorem baseslid
StepHypRef Expression
1 baseid 12285 . 2 Base = Slot (Base‘ndx)
2 basendxnn 12287 . 2 (Base‘ndx) ∈ ℕ
31, 2ndxslid 12257 1 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wcel 2128  cfv 5171  cn 8834  ndxcnx 12229  Slot cslot 12231  Basecbs 12232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-cnex 7824  ax-resscn 7825  ax-1re 7827  ax-addrcl 7830
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-iota 5136  df-fun 5173  df-fv 5179  df-inn 8835  df-ndx 12235  df-slot 12236  df-base 12238
This theorem is referenced by:  basfn  12289  opelstrbas  12329  1strbas  12331  2strbasg  12333  topnfn  12398  topnvalg  12405  topnidg  12406  setsmsbasg  12921
  Copyright terms: Public domain W3C validator