ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basendxnn GIF version

Theorem basendxnn 12521
Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
Assertion
Ref Expression
basendxnn (Base‘ndx) ∈ ℕ

Proof of Theorem basendxnn
StepHypRef Expression
1 df-base 12471 . . 3 Base = Slot 1
2 1nn 8933 . . 3 1 ∈ ℕ
31, 2ndxarg 12488 . 2 (Base‘ndx) = 1
43, 2eqeltri 2250 1 (Base‘ndx) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2148  cfv 5218  1c1 7815  cn 8922  ndxcnx 12462  Basecbs 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-inn 8923  df-ndx 12468  df-slot 12469  df-base 12471
This theorem is referenced by:  baseslid  12522  ressvalsets  12527  ressex  12528  resseqnbasd  12535  ressressg  12537  1strbas  12579  2strbasg  12581  2stropg  12582  2strbas1g  12584  rngbaseg  12597  srngbased  12608  lmodbased  12626  ipsbased  12638  tsetndxnbasendx  12652  topgrpbasd  12658  plendxnbasendx  12666  dsndxnbasendx  12677  unifndxnbasendx  12687  prdsex  12724  imasex  12732  imasival  12733  imasbas  12734  imasplusg  12735  mgpress  13147  ring1  13242
  Copyright terms: Public domain W3C validator