| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basendxnn | GIF version | ||
| Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) |
| Ref | Expression |
|---|---|
| basendxnn | ⊢ (Base‘ndx) ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 12711 | . . 3 ⊢ Base = Slot 1 | |
| 2 | 1nn 9020 | . . 3 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 12728 | . 2 ⊢ (Base‘ndx) = 1 |
| 4 | 3, 2 | eqeltri 2269 | 1 ⊢ (Base‘ndx) ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ‘cfv 5259 1c1 7899 ℕcn 9009 ndxcnx 12702 Basecbs 12705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-inn 9010 df-ndx 12708 df-slot 12709 df-base 12711 |
| This theorem is referenced by: baseslid 12762 basm 12766 ressvalsets 12769 ressex 12770 resseqnbasd 12778 ressressg 12780 1strbas 12822 2strbasg 12824 2stropg 12825 2strbas1g 12827 rngbaseg 12840 srngbased 12851 lmodbased 12869 ipsbased 12881 tsetndxnbasendx 12895 topgrpbasd 12901 plendxnbasendx 12909 dsndxnbasendx 12924 unifndxnbasendx 12934 prdsex 12973 prdsval 12977 prdsbas 12980 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 mgpress 13565 ring1 13693 zlmbasg 14263 znbas2 14274 psrval 14298 fnpsr 14299 psrbasg 14305 |
| Copyright terms: Public domain | W3C validator |