![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > basendxnn | GIF version |
Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) |
Ref | Expression |
---|---|
basendxnn | ⊢ (Base‘ndx) ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 12471 | . . 3 ⊢ Base = Slot 1 | |
2 | 1nn 8933 | . . 3 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 12488 | . 2 ⊢ (Base‘ndx) = 1 |
4 | 3, 2 | eqeltri 2250 | 1 ⊢ (Base‘ndx) ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ‘cfv 5218 1c1 7815 ℕcn 8922 ndxcnx 12462 Basecbs 12465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-inn 8923 df-ndx 12468 df-slot 12469 df-base 12471 |
This theorem is referenced by: baseslid 12522 ressvalsets 12527 ressex 12528 resseqnbasd 12535 ressressg 12537 1strbas 12579 2strbasg 12581 2stropg 12582 2strbas1g 12584 rngbaseg 12597 srngbased 12608 lmodbased 12626 ipsbased 12638 tsetndxnbasendx 12652 topgrpbasd 12658 plendxnbasendx 12666 dsndxnbasendx 12677 unifndxnbasendx 12687 prdsex 12724 imasex 12732 imasival 12733 imasbas 12734 imasplusg 12735 mgpress 13147 ring1 13242 |
Copyright terms: Public domain | W3C validator |