![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioo2bl | GIF version |
Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
remet.1 | β’ π· = ((abs β β ) βΎ (β Γ β)) |
Ref | Expression |
---|---|
ioo2bl | β’ ((π΄ β β β§ π΅ β β) β (π΄(,)π΅) = (((π΄ + π΅) / 2)(ballβπ·)((π΅ β π΄) / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 7937 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β (π΅ + π΄) β β) | |
2 | 1 | ancoms 268 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΅ + π΄) β β) |
3 | 2 | rehalfcld 9165 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΅ + π΄) / 2) β β) |
4 | resubcl 8221 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β (π΅ β π΄) β β) | |
5 | 4 | ancoms 268 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΅ β π΄) β β) |
6 | 5 | rehalfcld 9165 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΅ β π΄) / 2) β β) |
7 | remet.1 | . . . 4 β’ π· = ((abs β β ) βΎ (β Γ β)) | |
8 | 7 | bl2ioo 14045 | . . 3 β’ ((((π΅ + π΄) / 2) β β β§ ((π΅ β π΄) / 2) β β) β (((π΅ + π΄) / 2)(ballβπ·)((π΅ β π΄) / 2)) = ((((π΅ + π΄) / 2) β ((π΅ β π΄) / 2))(,)(((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)))) |
9 | 3, 6, 8 | syl2anc 411 | . 2 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2)(ballβπ·)((π΅ β π΄) / 2)) = ((((π΅ + π΄) / 2) β ((π΅ β π΄) / 2))(,)(((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)))) |
10 | recn 7944 | . . . . 5 β’ (π΅ β β β π΅ β β) | |
11 | recn 7944 | . . . . 5 β’ (π΄ β β β π΄ β β) | |
12 | addcom 8094 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β (π΅ + π΄) = (π΄ + π΅)) | |
13 | 10, 11, 12 | syl2anr 290 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΅ + π΄) = (π΄ + π΅)) |
14 | 13 | oveq1d 5890 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΅ + π΄) / 2) = ((π΄ + π΅) / 2)) |
15 | 14 | oveq1d 5890 | . 2 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2)(ballβπ·)((π΅ β π΄) / 2)) = (((π΄ + π΅) / 2)(ballβπ·)((π΅ β π΄) / 2))) |
16 | halfaddsub 9153 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β ((((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)) = π΅ β§ (((π΅ + π΄) / 2) β ((π΅ β π΄) / 2)) = π΄)) | |
17 | 10, 11, 16 | syl2anr 290 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)) = π΅ β§ (((π΅ + π΄) / 2) β ((π΅ β π΄) / 2)) = π΄)) |
18 | 17 | simprd 114 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2) β ((π΅ β π΄) / 2)) = π΄) |
19 | 17 | simpld 112 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)) = π΅) |
20 | 18, 19 | oveq12d 5893 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((((π΅ + π΄) / 2) β ((π΅ β π΄) / 2))(,)(((π΅ + π΄) / 2) + ((π΅ β π΄) / 2))) = (π΄(,)π΅)) |
21 | 9, 15, 20 | 3eqtr3rd 2219 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄(,)π΅) = (((π΄ + π΅) / 2)(ballβπ·)((π΅ β π΄) / 2))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 Γ cxp 4625 βΎ cres 4629 β ccom 4631 βcfv 5217 (class class class)co 5875 βcc 7809 βcr 7810 + caddc 7814 β cmin 8128 / cdiv 8629 2c2 8970 (,)cioo 9888 abscabs 11006 ballcbl 13445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 ax-caucvg 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-map 6650 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-n0 9177 df-z 9254 df-uz 9529 df-rp 9654 df-xadd 9773 df-ioo 9892 df-seqfrec 10446 df-exp 10520 df-cj 10851 df-re 10852 df-im 10853 df-rsqrt 11007 df-abs 11008 df-psmet 13450 df-xmet 13451 df-met 13452 df-bl 13453 |
This theorem is referenced by: ioo2blex 14047 |
Copyright terms: Public domain | W3C validator |