ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvid1 GIF version

Theorem grpinvid1 13254
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))

Proof of Theorem grpinvid1
StepHypRef Expression
1 oveq2 5933 . . . 4 ((𝑁𝑋) = 𝑌 → (𝑋 + (𝑁𝑋)) = (𝑋 + 𝑌))
21adantl 277 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑋 + (𝑁𝑋)) = (𝑋 + 𝑌))
3 grpinv.b . . . . . 6 𝐵 = (Base‘𝐺)
4 grpinv.p . . . . . 6 + = (+g𝐺)
5 grpinv.u . . . . . 6 0 = (0g𝐺)
6 grpinv.n . . . . . 6 𝑁 = (invg𝐺)
73, 4, 5, 6grprinv 13253 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
873adant3 1019 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
98adantr 276 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑋 + (𝑁𝑋)) = 0 )
102, 9eqtr3d 2231 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑋 + 𝑌) = 0 )
11 oveq2 5933 . . . 4 ((𝑋 + 𝑌) = 0 → ((𝑁𝑋) + (𝑋 + 𝑌)) = ((𝑁𝑋) + 0 ))
1211adantl 277 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁𝑋) + (𝑋 + 𝑌)) = ((𝑁𝑋) + 0 ))
133, 4, 5, 6grplinv 13252 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
1413oveq1d 5940 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((𝑁𝑋) + 𝑋) + 𝑌) = ( 0 + 𝑌))
15143adant3 1019 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((𝑁𝑋) + 𝑋) + 𝑌) = ( 0 + 𝑌))
163, 6grpinvcl 13250 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
1716adantrr 479 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (𝑁𝑋) ∈ 𝐵)
18 simprl 529 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
19 simprr 531 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
2017, 18, 193jca 1179 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑁𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵))
213, 4grpass 13211 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((𝑁𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑁𝑋) + 𝑋) + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
2220, 21syldan 282 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (((𝑁𝑋) + 𝑋) + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
23223impb 1201 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((𝑁𝑋) + 𝑋) + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
2415, 23eqtr3d 2231 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ( 0 + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
253, 4, 5grplid 13233 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ( 0 + 𝑌) = 𝑌)
26253adant2 1018 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ( 0 + 𝑌) = 𝑌)
2724, 26eqtr3d 2231 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + (𝑋 + 𝑌)) = 𝑌)
2827adantr 276 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁𝑋) + (𝑋 + 𝑌)) = 𝑌)
293, 4, 5grprid 13234 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
3016, 29syldan 282 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
31303adant3 1019 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
3231adantr 276 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
3312, 28, 323eqtr3rd 2238 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → (𝑁𝑋) = 𝑌)
3410, 33impbida 596 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Grpcgrp 13202  invgcminusg 13203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206
This theorem is referenced by:  grpinvid  13262  grpinvcnv  13270  grpinvadd  13280  subginv  13387  qusinv  13442  ghminv  13456  rngmneg1  13579  ringnegl  13683  lmodindp1  14060  cnfldneg  14205  zringinvg  14236
  Copyright terms: Public domain W3C validator