| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pn0sr | GIF version | ||
| Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) |
| Ref | Expression |
|---|---|
| pn0sr | ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m1r 7819 | . . . 4 ⊢ -1R ∈ R | |
| 2 | 1sr 7818 | . . . 4 ⊢ 1R ∈ R | |
| 3 | distrsrg 7826 | . . . 4 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R ∧ 1R ∈ R) → (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R))) | |
| 4 | 1, 2, 3 | mp3an23 1340 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R))) |
| 5 | m1p1sr 7827 | . . . . 5 ⊢ (-1R +R 1R) = 0R | |
| 6 | 5 | oveq2i 5933 | . . . 4 ⊢ (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R) |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R)) |
| 8 | mulclsr 7821 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
| 9 | 1, 8 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ R → (𝐴 ·R -1R) ∈ R) |
| 10 | mulclsr 7821 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 1R ∈ R) → (𝐴 ·R 1R) ∈ R) | |
| 11 | 2, 10 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) ∈ R) |
| 12 | addcomsrg 7822 | . . . 4 ⊢ (((𝐴 ·R -1R) ∈ R ∧ (𝐴 ·R 1R) ∈ R) → ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))) | |
| 13 | 9, 11, 12 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ R → ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))) |
| 14 | 4, 7, 13 | 3eqtr3d 2237 | . 2 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))) |
| 15 | 00sr 7836 | . 2 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
| 16 | 1idsr 7835 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | |
| 17 | 16 | oveq1d 5937 | . 2 ⊢ (𝐴 ∈ R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R))) |
| 18 | 14, 15, 17 | 3eqtr3rd 2238 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 Rcnr 7364 0Rc0r 7365 1Rc1r 7366 -1Rcm1r 7367 +R cplr 7368 ·R cmr 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-imp 7536 df-enr 7793 df-nr 7794 df-plr 7795 df-mr 7796 df-0r 7798 df-1r 7799 df-m1r 7800 |
| This theorem is referenced by: negexsr 7839 caucvgsrlemoffval 7863 map2psrprg 7872 axrnegex 7946 |
| Copyright terms: Public domain | W3C validator |