| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pn0sr | GIF version | ||
| Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) |
| Ref | Expression |
|---|---|
| pn0sr | ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m1r 7865 | . . . 4 ⊢ -1R ∈ R | |
| 2 | 1sr 7864 | . . . 4 ⊢ 1R ∈ R | |
| 3 | distrsrg 7872 | . . . 4 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R ∧ 1R ∈ R) → (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R))) | |
| 4 | 1, 2, 3 | mp3an23 1342 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R))) |
| 5 | m1p1sr 7873 | . . . . 5 ⊢ (-1R +R 1R) = 0R | |
| 6 | 5 | oveq2i 5955 | . . . 4 ⊢ (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R) |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R)) |
| 8 | mulclsr 7867 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
| 9 | 1, 8 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ R → (𝐴 ·R -1R) ∈ R) |
| 10 | mulclsr 7867 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 1R ∈ R) → (𝐴 ·R 1R) ∈ R) | |
| 11 | 2, 10 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) ∈ R) |
| 12 | addcomsrg 7868 | . . . 4 ⊢ (((𝐴 ·R -1R) ∈ R ∧ (𝐴 ·R 1R) ∈ R) → ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))) | |
| 13 | 9, 11, 12 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ R → ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))) |
| 14 | 4, 7, 13 | 3eqtr3d 2246 | . 2 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))) |
| 15 | 00sr 7882 | . 2 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
| 16 | 1idsr 7881 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | |
| 17 | 16 | oveq1d 5959 | . 2 ⊢ (𝐴 ∈ R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R))) |
| 18 | 14, 15, 17 | 3eqtr3rd 2247 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 (class class class)co 5944 Rcnr 7410 0Rc0r 7411 1Rc1r 7412 -1Rcm1r 7413 +R cplr 7414 ·R cmr 7415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-imp 7582 df-enr 7839 df-nr 7840 df-plr 7841 df-mr 7842 df-0r 7844 df-1r 7845 df-m1r 7846 |
| This theorem is referenced by: negexsr 7885 caucvgsrlemoffval 7909 map2psrprg 7918 axrnegex 7992 |
| Copyright terms: Public domain | W3C validator |