| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringnegl | GIF version | ||
| Description: Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringnegl.t | ⊢ · = (.r‘𝑅) |
| ringnegl.u | ⊢ 1 = (1r‘𝑅) |
| ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
| ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringnegl | ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringnegl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringnegl.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 4 | 2, 3 | ringidcl 13857 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 6 | ringgrp 13838 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 9 | 2, 8 | grpinvcl 13455 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
| 10 | 7, 5, 9 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
| 11 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 14 | 2, 12, 13 | ringdir 13856 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ( 1 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 15 | 1, 5, 10, 11, 14 | syl13anc 1252 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 16 | eqid 2206 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 17 | 2, 12, 16, 8 | grprinv 13458 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
| 18 | 7, 5, 17 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
| 19 | 18 | oveq1d 5972 | . . . . 5 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = ((0g‘𝑅) · 𝑋)) |
| 20 | 2, 13, 16 | ringlz 13880 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
| 21 | 1, 11, 20 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
| 22 | 19, 21 | eqtrd 2239 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (0g‘𝑅)) |
| 23 | 2, 13, 3 | ringlidm 13860 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| 24 | 1, 11, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
| 25 | 24 | oveq1d 5972 | . . . 4 ⊢ (𝜑 → (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 26 | 15, 22, 25 | 3eqtr3rd 2248 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅)) |
| 27 | 2, 13 | ringcl 13850 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
| 28 | 1, 10, 11, 27 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
| 29 | 2, 12, 16, 8 | grpinvid1 13459 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
| 30 | 7, 11, 28, 29 | syl3anc 1250 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
| 31 | 26, 30 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋)) |
| 32 | 31 | eqcomd 2212 | 1 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 .rcmulr 12985 0gc0g 13163 Grpcgrp 13407 invgcminusg 13408 1rcur 13796 Ringcrg 13833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-mgp 13758 df-ur 13797 df-ring 13835 |
| This theorem is referenced by: ringmneg1 13890 dvdsrneg 13940 lmodvsneg 14168 lmodsubvs 14180 lmodsubdi 14181 lmodsubdir 14182 |
| Copyright terms: Public domain | W3C validator |