![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringnegl | GIF version |
Description: Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringnegl.t | ⊢ · = (.r‘𝑅) |
ringnegl.u | ⊢ 1 = (1r‘𝑅) |
ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ringnegl | ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringnegl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ringnegl.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 13516 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
6 | ringgrp 13497 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
9 | 2, 8 | grpinvcl 13120 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
10 | 7, 5, 9 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
11 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | eqid 2193 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | 2, 12, 13 | ringdir 13515 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ( 1 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
15 | 1, 5, 10, 11, 14 | syl13anc 1251 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
16 | eqid 2193 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 2, 12, 16, 8 | grprinv 13123 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
18 | 7, 5, 17 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
19 | 18 | oveq1d 5933 | . . . . 5 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = ((0g‘𝑅) · 𝑋)) |
20 | 2, 13, 16 | ringlz 13539 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
21 | 1, 11, 20 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
22 | 19, 21 | eqtrd 2226 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (0g‘𝑅)) |
23 | 2, 13, 3 | ringlidm 13519 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
24 | 1, 11, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
25 | 24 | oveq1d 5933 | . . . 4 ⊢ (𝜑 → (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
26 | 15, 22, 25 | 3eqtr3rd 2235 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅)) |
27 | 2, 13 | ringcl 13509 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
28 | 1, 10, 11, 27 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
29 | 2, 12, 16, 8 | grpinvid1 13124 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
30 | 7, 11, 28, 29 | syl3anc 1249 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
31 | 26, 30 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋)) |
32 | 31 | eqcomd 2199 | 1 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 0gc0g 12867 Grpcgrp 13072 invgcminusg 13073 1rcur 13455 Ringcrg 13492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-mgp 13417 df-ur 13456 df-ring 13494 |
This theorem is referenced by: ringmneg1 13549 dvdsrneg 13599 lmodvsneg 13827 lmodsubvs 13839 lmodsubdi 13840 lmodsubdir 13841 |
Copyright terms: Public domain | W3C validator |