| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringnegl | GIF version | ||
| Description: Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringnegl.t | ⊢ · = (.r‘𝑅) |
| ringnegl.u | ⊢ 1 = (1r‘𝑅) |
| ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
| ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringnegl | ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringnegl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringnegl.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 4 | 2, 3 | ringidcl 13978 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 6 | ringgrp 13959 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 9 | 2, 8 | grpinvcl 13576 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
| 10 | 7, 5, 9 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
| 11 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 14 | 2, 12, 13 | ringdir 13977 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ( 1 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 15 | 1, 5, 10, 11, 14 | syl13anc 1273 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 16 | eqid 2229 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 17 | 2, 12, 16, 8 | grprinv 13579 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
| 18 | 7, 5, 17 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
| 19 | 18 | oveq1d 6015 | . . . . 5 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = ((0g‘𝑅) · 𝑋)) |
| 20 | 2, 13, 16 | ringlz 14001 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
| 21 | 1, 11, 20 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
| 22 | 19, 21 | eqtrd 2262 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (0g‘𝑅)) |
| 23 | 2, 13, 3 | ringlidm 13981 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| 24 | 1, 11, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
| 25 | 24 | oveq1d 6015 | . . . 4 ⊢ (𝜑 → (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 26 | 15, 22, 25 | 3eqtr3rd 2271 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅)) |
| 27 | 2, 13 | ringcl 13971 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
| 28 | 1, 10, 11, 27 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
| 29 | 2, 12, 16, 8 | grpinvid1 13580 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
| 30 | 7, 11, 28, 29 | syl3anc 1271 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
| 31 | 26, 30 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋)) |
| 32 | 31 | eqcomd 2235 | 1 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 .rcmulr 13106 0gc0g 13284 Grpcgrp 13528 invgcminusg 13529 1rcur 13917 Ringcrg 13954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-mgp 13879 df-ur 13918 df-ring 13956 |
| This theorem is referenced by: ringmneg1 14011 dvdsrneg 14061 lmodvsneg 14289 lmodsubvs 14301 lmodsubdi 14302 lmodsubdir 14303 |
| Copyright terms: Public domain | W3C validator |