ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringnegl GIF version

Theorem ringnegl 14009
Description: Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ringnegl (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem ringnegl
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 ringnegl.u . . . . . . 7 1 = (1r𝑅)
42, 3ringidcl 13978 . . . . . 6 (𝑅 ∈ Ring → 1𝐵)
51, 4syl 14 . . . . 5 (𝜑1𝐵)
6 ringgrp 13959 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
71, 6syl 14 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
92, 8grpinvcl 13576 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
107, 5, 9syl2anc 411 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
11 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
12 eqid 2229 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
142, 12, 13ringdir 13977 . . . . 5 ((𝑅 ∈ Ring ∧ ( 1𝐵 ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵)) → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
151, 5, 10, 11, 14syl13anc 1273 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
16 eqid 2229 . . . . . . . 8 (0g𝑅) = (0g𝑅)
172, 12, 16, 8grprinv 13579 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
187, 5, 17syl2anc 411 . . . . . 6 (𝜑 → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
1918oveq1d 6015 . . . . 5 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = ((0g𝑅) · 𝑋))
202, 13, 16ringlz 14001 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
211, 11, 20syl2anc 411 . . . . 5 (𝜑 → ((0g𝑅) · 𝑋) = (0g𝑅))
2219, 21eqtrd 2262 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (0g𝑅))
232, 13, 3ringlidm 13981 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
241, 11, 23syl2anc 411 . . . . 5 (𝜑 → ( 1 · 𝑋) = 𝑋)
2524oveq1d 6015 . . . 4 (𝜑 → (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)) = (𝑋(+g𝑅)((𝑁1 ) · 𝑋)))
2615, 22, 253eqtr3rd 2271 . . 3 (𝜑 → (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅))
272, 13ringcl 13971 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵) → ((𝑁1 ) · 𝑋) ∈ 𝐵)
281, 10, 11, 27syl3anc 1271 . . . 4 (𝜑 → ((𝑁1 ) · 𝑋) ∈ 𝐵)
292, 12, 16, 8grpinvid1 13580 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ ((𝑁1 ) · 𝑋) ∈ 𝐵) → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
307, 11, 28, 29syl3anc 1271 . . 3 (𝜑 → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
3126, 30mpbird 167 . 2 (𝜑 → (𝑁𝑋) = ((𝑁1 ) · 𝑋))
3231eqcomd 2235 1 (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  0gc0g 13284  Grpcgrp 13528  invgcminusg 13529  1rcur 13917  Ringcrg 13954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mgp 13879  df-ur 13918  df-ring 13956
This theorem is referenced by:  ringmneg1  14011  dvdsrneg  14061  lmodvsneg  14289  lmodsubvs  14301  lmodsubdi  14302  lmodsubdir  14303
  Copyright terms: Public domain W3C validator