ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringnegr GIF version

Theorem ringnegr 13858
Description: Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ringnegr (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))

Proof of Theorem ringnegr
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
3 ringgrp 13807 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
41, 3syl 14 . . . . . 6 (𝜑𝑅 ∈ Grp)
5 ringnegl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
6 ringnegl.u . . . . . . . 8 1 = (1r𝑅)
75, 6ringidcl 13826 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
81, 7syl 14 . . . . . 6 (𝜑1𝐵)
9 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
105, 9grpinvcl 13424 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
114, 8, 10syl2anc 411 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
12 eqid 2206 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
145, 12, 13ringdi 13824 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵1𝐵)) → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
151, 2, 11, 8, 14syl13anc 1252 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
16 eqid 2206 . . . . . . . 8 (0g𝑅) = (0g𝑅)
175, 12, 16, 9grplinv 13426 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
184, 8, 17syl2anc 411 . . . . . 6 (𝜑 → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
1918oveq2d 5967 . . . . 5 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (𝑋 · (0g𝑅)))
205, 13, 16ringrz 13850 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
211, 2, 20syl2anc 411 . . . . 5 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
2219, 21eqtrd 2239 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (0g𝑅))
235, 13, 6ringridm 13830 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
241, 2, 23syl2anc 411 . . . . 5 (𝜑 → (𝑋 · 1 ) = 𝑋)
2524oveq2d 5967 . . . 4 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)𝑋))
2615, 22, 253eqtr3rd 2248 . . 3 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅))
275, 13ringcl 13819 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵) → (𝑋 · (𝑁1 )) ∈ 𝐵)
281, 2, 11, 27syl3anc 1250 . . . 4 (𝜑 → (𝑋 · (𝑁1 )) ∈ 𝐵)
295, 12, 16, 9grpinvid2 13429 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑋 · (𝑁1 )) ∈ 𝐵) → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
304, 2, 28, 29syl3anc 1250 . . 3 (𝜑 → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
3126, 30mpbird 167 . 2 (𝜑 → (𝑁𝑋) = (𝑋 · (𝑁1 )))
3231eqcomd 2212 1 (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  0gc0g 13132  Grpcgrp 13376  invgcminusg 13377  1rcur 13765  Ringcrg 13802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-mgp 13727  df-ur 13766  df-ring 13804
This theorem is referenced by:  ringmneg2  13860  lmodsubdi  14150
  Copyright terms: Public domain W3C validator