![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringnegr | GIF version |
Description: Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringnegl.t | ⊢ · = (.r‘𝑅) |
ringnegl.u | ⊢ 1 = (1r‘𝑅) |
ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ringnegr | ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringgrp 13253 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 1, 3 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | ringnegl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | ringnegl.u | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 13272 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
8 | 1, 7 | syl 14 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐵) |
9 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
10 | 5, 9 | grpinvcl 12945 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
11 | 4, 8, 10 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
12 | eqid 2187 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | 5, 12, 13 | ringdi 13270 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
15 | 1, 2, 11, 8, 14 | syl13anc 1250 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
16 | eqid 2187 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 5, 12, 16, 9 | grplinv 12947 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
18 | 4, 8, 17 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
19 | 18 | oveq2d 5904 | . . . . 5 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (𝑋 · (0g‘𝑅))) |
20 | 5, 13, 16 | ringrz 13296 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
21 | 1, 2, 20 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
22 | 19, 21 | eqtrd 2220 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (0g‘𝑅)) |
23 | 5, 13, 6 | ringridm 13276 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
24 | 1, 2, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) |
25 | 24 | oveq2d 5904 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋)) |
26 | 15, 22, 25 | 3eqtr3rd 2229 | . . 3 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅)) |
27 | 5, 13 | ringcl 13265 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵) → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
28 | 1, 2, 11, 27 | syl3anc 1248 | . . . 4 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
29 | 5, 12, 16, 9 | grpinvid2 12950 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
30 | 4, 2, 28, 29 | syl3anc 1248 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
31 | 26, 30 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 ))) |
32 | 31 | eqcomd 2193 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 +gcplusg 12551 .rcmulr 12552 0gc0g 12723 Grpcgrp 12899 invgcminusg 12900 1rcur 13211 Ringcrg 13248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-plusg 12564 df-mulr 12565 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12902 df-minusg 12903 df-mgp 13173 df-ur 13212 df-ring 13250 |
This theorem is referenced by: ringmneg2 13304 lmodsubdi 13533 |
Copyright terms: Public domain | W3C validator |