| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsneg | GIF version | ||
| Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmodvsneg.b | ⊢ 𝐵 = (Base‘𝑊) |
| lmodvsneg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsneg.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsneg.n | ⊢ 𝑁 = (invg‘𝑊) |
| lmodvsneg.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsneg.m | ⊢ 𝑀 = (invg‘𝐹) |
| lmodvsneg.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvsneg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lmodvsneg.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| lmodvsneg | ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsneg.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvsneg.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 13927 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 5 | ringgrp 13633 | . . . . 5 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 7 | lmodvsneg.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | eqid 2196 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 7, 8 | ringidcl 13652 | . . . . 5 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 10 | 4, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 11 | lmodvsneg.m | . . . . 5 ⊢ 𝑀 = (invg‘𝐹) | |
| 12 | 7, 11 | grpinvcl 13250 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 13 | 6, 10, 12 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 14 | lmodvsneg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 15 | lmodvsneg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | lmodvsneg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | lmodvsneg.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 18 | eqid 2196 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 19 | 16, 2, 17, 7, 18 | lmodvsass 13945 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 20 | 1, 13, 14, 15, 19 | syl13anc 1251 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 21 | 7, 18, 8, 11, 4, 14 | ringnegl 13683 | . . 3 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) = (𝑀‘𝑅)) |
| 22 | 21 | oveq1d 5940 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘𝑅) · 𝑋)) |
| 23 | 16, 2, 17, 7 | lmodvscl 13937 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
| 24 | 1, 14, 15, 23 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝐵) |
| 25 | lmodvsneg.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
| 26 | 16, 25, 2, 17, 8, 11 | lmodvneg1 13962 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝐵) → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 27 | 1, 24, 26 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 28 | 20, 22, 27 | 3eqtr3rd 2238 | 1 ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 .rcmulr 12781 Scalarcsca 12783 ·𝑠 cvsca 12784 Grpcgrp 13202 invgcminusg 13203 1rcur 13591 Ringcrg 13628 LModclmod 13919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-mgp 13553 df-ur 13592 df-ring 13630 df-lmod 13921 |
| This theorem is referenced by: lmodnegadd 13968 |
| Copyright terms: Public domain | W3C validator |