| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsneg | GIF version | ||
| Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmodvsneg.b | ⊢ 𝐵 = (Base‘𝑊) |
| lmodvsneg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsneg.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsneg.n | ⊢ 𝑁 = (invg‘𝑊) |
| lmodvsneg.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsneg.m | ⊢ 𝑀 = (invg‘𝐹) |
| lmodvsneg.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvsneg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lmodvsneg.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| lmodvsneg | ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsneg.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvsneg.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 14244 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 5 | ringgrp 13950 | . . . . 5 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 7 | lmodvsneg.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | eqid 2229 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 7, 8 | ringidcl 13969 | . . . . 5 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 10 | 4, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 11 | lmodvsneg.m | . . . . 5 ⊢ 𝑀 = (invg‘𝐹) | |
| 12 | 7, 11 | grpinvcl 13567 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 13 | 6, 10, 12 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 14 | lmodvsneg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 15 | lmodvsneg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | lmodvsneg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | lmodvsneg.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 18 | eqid 2229 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 19 | 16, 2, 17, 7, 18 | lmodvsass 14262 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 20 | 1, 13, 14, 15, 19 | syl13anc 1273 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 21 | 7, 18, 8, 11, 4, 14 | ringnegl 14000 | . . 3 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) = (𝑀‘𝑅)) |
| 22 | 21 | oveq1d 6009 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘𝑅) · 𝑋)) |
| 23 | 16, 2, 17, 7 | lmodvscl 14254 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
| 24 | 1, 14, 15, 23 | syl3anc 1271 | . . 3 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝐵) |
| 25 | lmodvsneg.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
| 26 | 16, 25, 2, 17, 8, 11 | lmodvneg1 14279 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝐵) → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 27 | 1, 24, 26 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 28 | 20, 22, 27 | 3eqtr3rd 2271 | 1 ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 .rcmulr 13097 Scalarcsca 13099 ·𝑠 cvsca 13100 Grpcgrp 13519 invgcminusg 13520 1rcur 13908 Ringcrg 13945 LModclmod 14236 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-mgp 13870 df-ur 13909 df-ring 13947 df-lmod 14238 |
| This theorem is referenced by: lmodnegadd 14285 |
| Copyright terms: Public domain | W3C validator |