ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemap GIF version

Theorem logbgcd1irraplemap 15101
Description: Lemma for logbgcd1irrap 15102. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemap (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))

Proof of Theorem logbgcd1irraplemap
StepHypRef Expression
1 logbgcd1irraplem.x . . . . 5 (𝜑𝑋 ∈ (ℤ‘2))
2 logbgcd1irraplem.b . . . . 5 (𝜑𝐵 ∈ (ℤ‘2))
3 logbgcd1irraplem.rp . . . . 5 (𝜑 → (𝑋 gcd 𝐵) = 1)
4 logbgcd1irraplem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 logbgcd1irraplem.n . . . . 5 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5logbgcd1irraplemexp 15100 . . . 4 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
7 eluz2nn 9631 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
82, 7syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℕ)
98nnrpd 9760 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
10 1red 8034 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
118nnred 8995 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
12 eluz2gt1 9667 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
132, 12syl 14 . . . . . . 7 (𝜑 → 1 < 𝐵)
1410, 11, 13gtapd 8656 . . . . . 6 (𝜑𝐵 # 1)
15 eluz2nn 9631 . . . . . . . 8 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
161, 15syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℕ)
1716nnrpd 9760 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
18 rpcxplogb 15096 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
199, 14, 17, 18syl3anc 1249 . . . . 5 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
2019oveq1d 5933 . . . 4 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) = (𝑋𝑁))
21 znq 9689 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ)
224, 5, 21syl2anc 411 . . . . . . 7 (𝜑 → (𝑀 / 𝑁) ∈ ℚ)
23 qre 9690 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ)
2422, 23syl 14 . . . . . 6 (𝜑 → (𝑀 / 𝑁) ∈ ℝ)
255nncnd 8996 . . . . . 6 (𝜑𝑁 ∈ ℂ)
269, 24, 25cxpmuld 15070 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁))
274zcnd 9440 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
285nnap0d 9028 . . . . . . . 8 (𝜑𝑁 # 0)
2927, 25, 28divcanap1d 8810 . . . . . . 7 (𝜑 → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3029oveq2d 5934 . . . . . 6 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑐𝑀))
31 cxpexpnn 15031 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝐵𝑐𝑀) = (𝐵𝑀))
328, 4, 31syl2anc 411 . . . . . 6 (𝜑 → (𝐵𝑐𝑀) = (𝐵𝑀))
3330, 32eqtrd 2226 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑀))
349, 24rpcxpcld 15066 . . . . . 6 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+)
355nnzd 9438 . . . . . 6 (𝜑𝑁 ∈ ℤ)
36 cxpexprp 15030 . . . . . 6 (((𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+𝑁 ∈ ℤ) → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3734, 35, 36syl2anc 411 . . . . 5 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3826, 33, 373eqtr3rd 2235 . . . 4 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) = (𝐵𝑀))
396, 20, 383brtr4d 4061 . . 3 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
40 relogbzcl 15084 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
412, 17, 40syl2anc 411 . . . . . 6 (𝜑 → (𝐵 logb 𝑋) ∈ ℝ)
4241recnd 8048 . . . . 5 (𝜑 → (𝐵 logb 𝑋) ∈ ℂ)
439, 42rpcncxpcld 15061 . . . 4 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ)
44 qcn 9699 . . . . . 6 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℂ)
4522, 44syl 14 . . . . 5 (𝜑 → (𝑀 / 𝑁) ∈ ℂ)
469, 45rpcncxpcld 15061 . . . 4 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ)
47 apexp1 10789 . . . 4 (((𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ ∧ (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4843, 46, 5, 47syl3anc 1249 . . 3 (𝜑 → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4939, 48mpd 13 . 2 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁)))
50 apcxp2 15072 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ ((𝐵 logb 𝑋) ∈ ℝ ∧ (𝑀 / 𝑁) ∈ ℝ)) → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
519, 14, 41, 24, 50syl22anc 1250 . 2 (𝜑 → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
5249, 51mpbird 167 1 (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  1c1 7873   · cmul 7877   < clt 8054   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  cz 9317  cuz 9592  cq 9684  +crp 9719  cexp 10609   gcd cgcd 12079  𝑐ccxp 14992   logb clogb 15075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-ico 9960  df-icc 9961  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-e 11792  df-dvds 11931  df-gcd 12080  df-prm 12246  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811  df-relog 14993  df-rpcxp 14994  df-logb 15076
This theorem is referenced by:  logbgcd1irrap  15102
  Copyright terms: Public domain W3C validator