![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > logbgcd1irraplemap | GIF version |
Description: Lemma for logbgcd1irrap 14848. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.) |
Ref | Expression |
---|---|
logbgcd1irraplem.x | ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) |
logbgcd1irraplem.b | ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) |
logbgcd1irraplem.rp | ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) |
logbgcd1irraplem.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
logbgcd1irraplem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
logbgcd1irraplemap | ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logbgcd1irraplem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) | |
2 | logbgcd1irraplem.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) | |
3 | logbgcd1irraplem.rp | . . . . 5 ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) | |
4 | logbgcd1irraplem.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | logbgcd1irraplem.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 1, 2, 3, 4, 5 | logbgcd1irraplemexp 14846 | . . . 4 ⊢ (𝜑 → (𝑋↑𝑁) # (𝐵↑𝑀)) |
7 | eluz2nn 9596 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
8 | 2, 7 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
9 | 8 | nnrpd 9724 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
10 | 1red 8002 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
11 | 8 | nnred 8962 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
12 | eluz2gt1 9632 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
13 | 2, 12 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝐵) |
14 | 10, 11, 13 | gtapd 8624 | . . . . . 6 ⊢ (𝜑 → 𝐵 # 1) |
15 | eluz2nn 9596 | . . . . . . . 8 ⊢ (𝑋 ∈ (ℤ≥‘2) → 𝑋 ∈ ℕ) | |
16 | 1, 15 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℕ) |
17 | 16 | nnrpd 9724 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
18 | rpcxplogb 14842 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | |
19 | 9, 14, 17, 18 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
20 | 19 | oveq1d 5911 | . . . 4 ⊢ (𝜑 → ((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) = (𝑋↑𝑁)) |
21 | znq 9654 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ) | |
22 | 4, 5, 21 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℚ) |
23 | qre 9655 | . . . . . . 7 ⊢ ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ) | |
24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℝ) |
25 | 5 | nncnd 8963 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
26 | 9, 24, 25 | cxpmuld 14816 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁)) |
27 | 4 | zcnd 9406 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
28 | 5 | nnap0d 8995 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 # 0) |
29 | 27, 25, 28 | divcanap1d 8778 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 / 𝑁) · 𝑁) = 𝑀) |
30 | 29 | oveq2d 5912 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵↑𝑐𝑀)) |
31 | cxpexpnn 14777 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) | |
32 | 8, 4, 31 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) |
33 | 30, 32 | eqtrd 2222 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵↑𝑀)) |
34 | 9, 24 | rpcxpcld 14812 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℝ+) |
35 | 5 | nnzd 9404 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
36 | cxpexprp 14776 | . . . . . 6 ⊢ (((𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) | |
37 | 34, 35, 36 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) |
38 | 26, 33, 37 | 3eqtr3rd 2231 | . . . 4 ⊢ (𝜑 → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) = (𝐵↑𝑀)) |
39 | 6, 20, 38 | 3brtr4d 4050 | . . 3 ⊢ (𝜑 → ((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) |
40 | relogbzcl 14830 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ) | |
41 | 2, 17, 40 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℝ) |
42 | 41 | recnd 8016 | . . . . 5 ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℂ) |
43 | 9, 42 | rpcncxpcld 14807 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) ∈ ℂ) |
44 | qcn 9664 | . . . . . 6 ⊢ ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℂ) | |
45 | 22, 44 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℂ) |
46 | 9, 45 | rpcncxpcld 14807 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℂ) |
47 | apexp1 10730 | . . . 4 ⊢ (((𝐵↑𝑐(𝐵 logb 𝑋)) ∈ ℂ ∧ (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) | |
48 | 43, 46, 5, 47 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) |
49 | 39, 48 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁))) |
50 | apcxp2 14818 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ ((𝐵 logb 𝑋) ∈ ℝ ∧ (𝑀 / 𝑁) ∈ ℝ)) → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) | |
51 | 9, 14, 41, 24, 50 | syl22anc 1250 | . 2 ⊢ (𝜑 → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) |
52 | 49, 51 | mpbird 167 | 1 ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5896 ℂcc 7839 ℝcr 7840 1c1 7842 · cmul 7846 < clt 8022 # cap 8568 / cdiv 8659 ℕcn 8949 2c2 9000 ℤcz 9283 ℤ≥cuz 9558 ℚcq 9649 ℝ+crp 9683 ↑cexp 10550 gcd cgcd 11975 ↑𝑐ccxp 14738 logb clogb 14821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 ax-caucvg 7961 ax-pre-suploc 7962 ax-addf 7963 ax-mulf 7964 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-of 6106 df-1st 6165 df-2nd 6166 df-recs 6330 df-irdg 6395 df-frec 6416 df-1o 6441 df-2o 6442 df-oadd 6445 df-er 6559 df-map 6676 df-pm 6677 df-en 6767 df-dom 6768 df-fin 6769 df-sup 7013 df-inf 7014 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-n0 9207 df-z 9284 df-uz 9559 df-q 9650 df-rp 9684 df-xneg 9802 df-xadd 9803 df-ioo 9922 df-ico 9924 df-icc 9925 df-fz 10039 df-fzo 10173 df-fl 10301 df-mod 10354 df-seqfrec 10477 df-exp 10551 df-fac 10738 df-bc 10760 df-ihash 10788 df-shft 10856 df-cj 10883 df-re 10884 df-im 10885 df-rsqrt 11039 df-abs 11040 df-clim 11319 df-sumdc 11394 df-ef 11688 df-e 11689 df-dvds 11827 df-gcd 11976 df-prm 12140 df-rest 12746 df-topgen 12765 df-psmet 13856 df-xmet 13857 df-met 13858 df-bl 13859 df-mopn 13860 df-top 13958 df-topon 13971 df-bases 14003 df-ntr 14056 df-cn 14148 df-cnp 14149 df-tx 14213 df-cncf 14518 df-limced 14585 df-dvap 14586 df-relog 14739 df-rpcxp 14740 df-logb 14822 |
This theorem is referenced by: logbgcd1irrap 14848 |
Copyright terms: Public domain | W3C validator |