Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemap GIF version

Theorem logbgcd1irraplemap 13130
 Description: Lemma for logbgcd1irrap 13131. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemap (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))

Proof of Theorem logbgcd1irraplemap
StepHypRef Expression
1 logbgcd1irraplem.x . . . . 5 (𝜑𝑋 ∈ (ℤ‘2))
2 logbgcd1irraplem.b . . . . 5 (𝜑𝐵 ∈ (ℤ‘2))
3 logbgcd1irraplem.rp . . . . 5 (𝜑 → (𝑋 gcd 𝐵) = 1)
4 logbgcd1irraplem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 logbgcd1irraplem.n . . . . 5 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5logbgcd1irraplemexp 13129 . . . 4 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
7 eluz2nn 9417 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
82, 7syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℕ)
98nnrpd 9540 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
10 1red 7834 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
118nnred 8786 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
12 eluz2gt1 9452 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
132, 12syl 14 . . . . . . 7 (𝜑 → 1 < 𝐵)
1410, 11, 13gtapd 8452 . . . . . 6 (𝜑𝐵 # 1)
15 eluz2nn 9417 . . . . . . . 8 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
161, 15syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℕ)
1716nnrpd 9540 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
18 rpcxplogb 13125 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
199, 14, 17, 18syl3anc 1217 . . . . 5 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
2019oveq1d 5801 . . . 4 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) = (𝑋𝑁))
21 znq 9472 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ)
224, 5, 21syl2anc 409 . . . . . . 7 (𝜑 → (𝑀 / 𝑁) ∈ ℚ)
23 qre 9473 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ)
2422, 23syl 14 . . . . . 6 (𝜑 → (𝑀 / 𝑁) ∈ ℝ)
255nncnd 8787 . . . . . 6 (𝜑𝑁 ∈ ℂ)
269, 24, 25cxpmuld 13100 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁))
274zcnd 9227 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
285nnap0d 8819 . . . . . . . 8 (𝜑𝑁 # 0)
2927, 25, 28divcanap1d 8604 . . . . . . 7 (𝜑 → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3029oveq2d 5802 . . . . . 6 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑐𝑀))
31 cxpexpnn 13061 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝐵𝑐𝑀) = (𝐵𝑀))
328, 4, 31syl2anc 409 . . . . . 6 (𝜑 → (𝐵𝑐𝑀) = (𝐵𝑀))
3330, 32eqtrd 2174 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑀))
349, 24rpcxpcld 13096 . . . . . 6 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+)
355nnzd 9225 . . . . . 6 (𝜑𝑁 ∈ ℤ)
36 cxpexprp 13060 . . . . . 6 (((𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+𝑁 ∈ ℤ) → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3734, 35, 36syl2anc 409 . . . . 5 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3826, 33, 373eqtr3rd 2183 . . . 4 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) = (𝐵𝑀))
396, 20, 383brtr4d 3970 . . 3 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
40 relogbzcl 13113 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
412, 17, 40syl2anc 409 . . . . . 6 (𝜑 → (𝐵 logb 𝑋) ∈ ℝ)
4241recnd 7847 . . . . 5 (𝜑 → (𝐵 logb 𝑋) ∈ ℂ)
439, 42rpcncxpcld 13091 . . . 4 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ)
44 qcn 9482 . . . . . 6 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℂ)
4522, 44syl 14 . . . . 5 (𝜑 → (𝑀 / 𝑁) ∈ ℂ)
469, 45rpcncxpcld 13091 . . . 4 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ)
47 apexp1 10525 . . . 4 (((𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ ∧ (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4843, 46, 5, 47syl3anc 1217 . . 3 (𝜑 → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4939, 48mpd 13 . 2 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁)))
50 apcxp2 13102 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ ((𝐵 logb 𝑋) ∈ ℝ ∧ (𝑀 / 𝑁) ∈ ℝ)) → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
519, 14, 41, 24, 50syl22anc 1218 . 2 (𝜑 → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
5249, 51mpbird 166 1 (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1332   ∈ wcel 1481   class class class wbr 3939  ‘cfv 5135  (class class class)co 5786  ℂcc 7671  ℝcr 7672  1c1 7674   · cmul 7678   < clt 7853   # cap 8396   / cdiv 8485  ℕcn 8773  2c2 8824  ℤcz 9107  ℤ≥cuz 9379  ℚcq 9467  ℝ+crp 9499  ↑cexp 10352   gcd cgcd 11707  ↑𝑐ccxp 13022   logb clogb 13104 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2123  ax-coll 4053  ax-sep 4056  ax-nul 4064  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-iinf 4513  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-mulrcl 7772  ax-addcom 7773  ax-mulcom 7774  ax-addass 7775  ax-mulass 7776  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-1rid 7780  ax-0id 7781  ax-rnegex 7782  ax-precex 7783  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-apti 7788  ax-pre-ltadd 7789  ax-pre-mulgt0 7790  ax-pre-mulext 7791  ax-arch 7792  ax-caucvg 7793  ax-pre-suploc 7794  ax-addf 7795  ax-mulf 7796 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1738  df-eu 2004  df-mo 2005  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rmo 2426  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-if 3482  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-iun 3825  df-disj 3917  df-br 3940  df-opab 4000  df-mpt 4001  df-tr 4037  df-id 4226  df-po 4229  df-iso 4230  df-iord 4299  df-on 4301  df-ilim 4302  df-suc 4304  df-iom 4516  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142  df-fv 5143  df-isom 5144  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-of 5994  df-1st 6050  df-2nd 6051  df-recs 6214  df-irdg 6279  df-frec 6300  df-1o 6325  df-2o 6326  df-oadd 6329  df-er 6441  df-map 6556  df-pm 6557  df-en 6647  df-dom 6648  df-fin 6649  df-sup 6888  df-inf 6889  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-reap 8390  df-ap 8397  df-div 8486  df-inn 8774  df-2 8832  df-3 8833  df-4 8834  df-n0 9031  df-z 9108  df-uz 9380  df-q 9468  df-rp 9500  df-xneg 9618  df-xadd 9619  df-ioo 9734  df-ico 9736  df-icc 9737  df-fz 9851  df-fzo 9980  df-fl 10103  df-mod 10156  df-seqfrec 10279  df-exp 10353  df-fac 10533  df-bc 10555  df-ihash 10583  df-shft 10648  df-cj 10675  df-re 10676  df-im 10677  df-rsqrt 10831  df-abs 10832  df-clim 11109  df-sumdc 11184  df-ef 11427  df-e 11428  df-dvds 11566  df-gcd 11708  df-prm 11861  df-rest 12197  df-topgen 12216  df-psmet 12231  df-xmet 12232  df-met 12233  df-bl 12234  df-mopn 12235  df-top 12240  df-topon 12253  df-bases 12285  df-ntr 12340  df-cn 12432  df-cnp 12433  df-tx 12497  df-cncf 12802  df-limced 12869  df-dvap 12870  df-relog 13023  df-rpcxp 13024  df-logb 13105 This theorem is referenced by:  logbgcd1irrap  13131
 Copyright terms: Public domain W3C validator