ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemap GIF version

Theorem logbgcd1irraplemap 15651
Description: Lemma for logbgcd1irrap 15652. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemap (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))

Proof of Theorem logbgcd1irraplemap
StepHypRef Expression
1 logbgcd1irraplem.x . . . . 5 (𝜑𝑋 ∈ (ℤ‘2))
2 logbgcd1irraplem.b . . . . 5 (𝜑𝐵 ∈ (ℤ‘2))
3 logbgcd1irraplem.rp . . . . 5 (𝜑 → (𝑋 gcd 𝐵) = 1)
4 logbgcd1irraplem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 logbgcd1irraplem.n . . . . 5 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5logbgcd1irraplemexp 15650 . . . 4 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
7 eluz2nn 9769 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
82, 7syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℕ)
98nnrpd 9898 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
10 1red 8169 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
118nnred 9131 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
12 eluz2gt1 9805 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
132, 12syl 14 . . . . . . 7 (𝜑 → 1 < 𝐵)
1410, 11, 13gtapd 8792 . . . . . 6 (𝜑𝐵 # 1)
15 eluz2nn 9769 . . . . . . . 8 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
161, 15syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℕ)
1716nnrpd 9898 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
18 rpcxplogb 15646 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
199, 14, 17, 18syl3anc 1271 . . . . 5 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
2019oveq1d 6022 . . . 4 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) = (𝑋𝑁))
21 znq 9827 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ)
224, 5, 21syl2anc 411 . . . . . . 7 (𝜑 → (𝑀 / 𝑁) ∈ ℚ)
23 qre 9828 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ)
2422, 23syl 14 . . . . . 6 (𝜑 → (𝑀 / 𝑁) ∈ ℝ)
255nncnd 9132 . . . . . 6 (𝜑𝑁 ∈ ℂ)
269, 24, 25cxpmuld 15619 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁))
274zcnd 9578 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
285nnap0d 9164 . . . . . . . 8 (𝜑𝑁 # 0)
2927, 25, 28divcanap1d 8946 . . . . . . 7 (𝜑 → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3029oveq2d 6023 . . . . . 6 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑐𝑀))
31 cxpexpnn 15578 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝐵𝑐𝑀) = (𝐵𝑀))
328, 4, 31syl2anc 411 . . . . . 6 (𝜑 → (𝐵𝑐𝑀) = (𝐵𝑀))
3330, 32eqtrd 2262 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑀))
349, 24rpcxpcld 15615 . . . . . 6 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+)
355nnzd 9576 . . . . . 6 (𝜑𝑁 ∈ ℤ)
36 cxpexprp 15577 . . . . . 6 (((𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+𝑁 ∈ ℤ) → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3734, 35, 36syl2anc 411 . . . . 5 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3826, 33, 373eqtr3rd 2271 . . . 4 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) = (𝐵𝑀))
396, 20, 383brtr4d 4115 . . 3 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
40 relogbzcl 15634 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
412, 17, 40syl2anc 411 . . . . . 6 (𝜑 → (𝐵 logb 𝑋) ∈ ℝ)
4241recnd 8183 . . . . 5 (𝜑 → (𝐵 logb 𝑋) ∈ ℂ)
439, 42rpcncxpcld 15609 . . . 4 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ)
44 qcn 9837 . . . . . 6 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℂ)
4522, 44syl 14 . . . . 5 (𝜑 → (𝑀 / 𝑁) ∈ ℂ)
469, 45rpcncxpcld 15609 . . . 4 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ)
47 apexp1 10948 . . . 4 (((𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ ∧ (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4843, 46, 5, 47syl3anc 1271 . . 3 (𝜑 → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4939, 48mpd 13 . 2 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁)))
50 apcxp2 15621 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ ((𝐵 logb 𝑋) ∈ ℝ ∧ (𝑀 / 𝑁) ∈ ℝ)) → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
519, 14, 41, 24, 50syl22anc 1272 . 2 (𝜑 → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
5249, 51mpbird 167 1 (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  1c1 8008   · cmul 8012   < clt 8189   # cap 8736   / cdiv 8827  cn 9118  2c2 9169  cz 9454  cuz 9730  cq 9822  +crp 9857  cexp 10768   gcd cgcd 12482  𝑐ccxp 15539   logb clogb 15625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-pre-suploc 8128  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-ico 10098  df-icc 10099  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-bc 10978  df-ihash 11006  df-shft 11334  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ef 12167  df-e 12168  df-dvds 12307  df-gcd 12483  df-prm 12638  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253  df-limced 15338  df-dvap 15339  df-relog 15540  df-rpcxp 15541  df-logb 15626
This theorem is referenced by:  logbgcd1irrap  15652
  Copyright terms: Public domain W3C validator