ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemap GIF version

Theorem logbgcd1irraplemap 15205
Description: Lemma for logbgcd1irrap 15206. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemap (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))

Proof of Theorem logbgcd1irraplemap
StepHypRef Expression
1 logbgcd1irraplem.x . . . . 5 (𝜑𝑋 ∈ (ℤ‘2))
2 logbgcd1irraplem.b . . . . 5 (𝜑𝐵 ∈ (ℤ‘2))
3 logbgcd1irraplem.rp . . . . 5 (𝜑 → (𝑋 gcd 𝐵) = 1)
4 logbgcd1irraplem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 logbgcd1irraplem.n . . . . 5 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5logbgcd1irraplemexp 15204 . . . 4 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
7 eluz2nn 9640 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
82, 7syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℕ)
98nnrpd 9769 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
10 1red 8041 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
118nnred 9003 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
12 eluz2gt1 9676 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
132, 12syl 14 . . . . . . 7 (𝜑 → 1 < 𝐵)
1410, 11, 13gtapd 8664 . . . . . 6 (𝜑𝐵 # 1)
15 eluz2nn 9640 . . . . . . . 8 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
161, 15syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℕ)
1716nnrpd 9769 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
18 rpcxplogb 15200 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
199, 14, 17, 18syl3anc 1249 . . . . 5 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
2019oveq1d 5937 . . . 4 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) = (𝑋𝑁))
21 znq 9698 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ)
224, 5, 21syl2anc 411 . . . . . . 7 (𝜑 → (𝑀 / 𝑁) ∈ ℚ)
23 qre 9699 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ)
2422, 23syl 14 . . . . . 6 (𝜑 → (𝑀 / 𝑁) ∈ ℝ)
255nncnd 9004 . . . . . 6 (𝜑𝑁 ∈ ℂ)
269, 24, 25cxpmuld 15173 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁))
274zcnd 9449 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
285nnap0d 9036 . . . . . . . 8 (𝜑𝑁 # 0)
2927, 25, 28divcanap1d 8818 . . . . . . 7 (𝜑 → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3029oveq2d 5938 . . . . . 6 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑐𝑀))
31 cxpexpnn 15132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝐵𝑐𝑀) = (𝐵𝑀))
328, 4, 31syl2anc 411 . . . . . 6 (𝜑 → (𝐵𝑐𝑀) = (𝐵𝑀))
3330, 32eqtrd 2229 . . . . 5 (𝜑 → (𝐵𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵𝑀))
349, 24rpcxpcld 15169 . . . . . 6 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+)
355nnzd 9447 . . . . . 6 (𝜑𝑁 ∈ ℤ)
36 cxpexprp 15131 . . . . . 6 (((𝐵𝑐(𝑀 / 𝑁)) ∈ ℝ+𝑁 ∈ ℤ) → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3734, 35, 36syl2anc 411 . . . . 5 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
3826, 33, 373eqtr3rd 2238 . . . 4 (𝜑 → ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) = (𝐵𝑀))
396, 20, 383brtr4d 4065 . . 3 (𝜑 → ((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁))
40 relogbzcl 15188 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
412, 17, 40syl2anc 411 . . . . . 6 (𝜑 → (𝐵 logb 𝑋) ∈ ℝ)
4241recnd 8055 . . . . 5 (𝜑 → (𝐵 logb 𝑋) ∈ ℂ)
439, 42rpcncxpcld 15163 . . . 4 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ)
44 qcn 9708 . . . . . 6 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℂ)
4522, 44syl 14 . . . . 5 (𝜑 → (𝑀 / 𝑁) ∈ ℂ)
469, 45rpcncxpcld 15163 . . . 4 (𝜑 → (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ)
47 apexp1 10810 . . . 4 (((𝐵𝑐(𝐵 logb 𝑋)) ∈ ℂ ∧ (𝐵𝑐(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4843, 46, 5, 47syl3anc 1249 . . 3 (𝜑 → (((𝐵𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
4939, 48mpd 13 . 2 (𝜑 → (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁)))
50 apcxp2 15175 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ ((𝐵 logb 𝑋) ∈ ℝ ∧ (𝑀 / 𝑁) ∈ ℝ)) → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
519, 14, 41, 24, 50syl22anc 1250 . 2 (𝜑 → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵𝑐(𝐵 logb 𝑋)) # (𝐵𝑐(𝑀 / 𝑁))))
5249, 51mpbird 167 1 (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  1c1 7880   · cmul 7884   < clt 8061   # cap 8608   / cdiv 8699  cn 8990  2c2 9041  cz 9326  cuz 9601  cq 9693  +crp 9728  cexp 10630   gcd cgcd 12120  𝑐ccxp 15093   logb clogb 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-e 11814  df-dvds 11953  df-gcd 12121  df-prm 12276  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893  df-relog 15094  df-rpcxp 15095  df-logb 15180
This theorem is referenced by:  logbgcd1irrap  15206
  Copyright terms: Public domain W3C validator