| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > logbgcd1irraplemap | GIF version | ||
| Description: Lemma for logbgcd1irrap 15486. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.) |
| Ref | Expression |
|---|---|
| logbgcd1irraplem.x | ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) |
| logbgcd1irraplem.b | ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) |
| logbgcd1irraplem.rp | ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) |
| logbgcd1irraplem.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| logbgcd1irraplem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| logbgcd1irraplemap | ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logbgcd1irraplem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) | |
| 2 | logbgcd1irraplem.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) | |
| 3 | logbgcd1irraplem.rp | . . . . 5 ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) | |
| 4 | logbgcd1irraplem.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | logbgcd1irraplem.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 1, 2, 3, 4, 5 | logbgcd1irraplemexp 15484 | . . . 4 ⊢ (𝜑 → (𝑋↑𝑁) # (𝐵↑𝑀)) |
| 7 | eluz2nn 9694 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
| 8 | 2, 7 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| 9 | 8 | nnrpd 9823 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| 10 | 1red 8094 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 11 | 8 | nnred 9056 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 12 | eluz2gt1 9730 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
| 13 | 2, 12 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝐵) |
| 14 | 10, 11, 13 | gtapd 8717 | . . . . . 6 ⊢ (𝜑 → 𝐵 # 1) |
| 15 | eluz2nn 9694 | . . . . . . . 8 ⊢ (𝑋 ∈ (ℤ≥‘2) → 𝑋 ∈ ℕ) | |
| 16 | 1, 15 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℕ) |
| 17 | 16 | nnrpd 9823 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| 18 | rpcxplogb 15480 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | |
| 19 | 9, 14, 17, 18 | syl3anc 1250 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
| 20 | 19 | oveq1d 5966 | . . . 4 ⊢ (𝜑 → ((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) = (𝑋↑𝑁)) |
| 21 | znq 9752 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ) | |
| 22 | 4, 5, 21 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℚ) |
| 23 | qre 9753 | . . . . . . 7 ⊢ ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ) | |
| 24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℝ) |
| 25 | 5 | nncnd 9057 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 26 | 9, 24, 25 | cxpmuld 15453 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁)) |
| 27 | 4 | zcnd 9503 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 28 | 5 | nnap0d 9089 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 # 0) |
| 29 | 27, 25, 28 | divcanap1d 8871 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 / 𝑁) · 𝑁) = 𝑀) |
| 30 | 29 | oveq2d 5967 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵↑𝑐𝑀)) |
| 31 | cxpexpnn 15412 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) | |
| 32 | 8, 4, 31 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) |
| 33 | 30, 32 | eqtrd 2239 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵↑𝑀)) |
| 34 | 9, 24 | rpcxpcld 15449 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℝ+) |
| 35 | 5 | nnzd 9501 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 36 | cxpexprp 15411 | . . . . . 6 ⊢ (((𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) | |
| 37 | 34, 35, 36 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) |
| 38 | 26, 33, 37 | 3eqtr3rd 2248 | . . . 4 ⊢ (𝜑 → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) = (𝐵↑𝑀)) |
| 39 | 6, 20, 38 | 3brtr4d 4079 | . . 3 ⊢ (𝜑 → ((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) |
| 40 | relogbzcl 15468 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ) | |
| 41 | 2, 17, 40 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℝ) |
| 42 | 41 | recnd 8108 | . . . . 5 ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℂ) |
| 43 | 9, 42 | rpcncxpcld 15443 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) ∈ ℂ) |
| 44 | qcn 9762 | . . . . . 6 ⊢ ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℂ) | |
| 45 | 22, 44 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℂ) |
| 46 | 9, 45 | rpcncxpcld 15443 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℂ) |
| 47 | apexp1 10870 | . . . 4 ⊢ (((𝐵↑𝑐(𝐵 logb 𝑋)) ∈ ℂ ∧ (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) | |
| 48 | 43, 46, 5, 47 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) |
| 49 | 39, 48 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁))) |
| 50 | apcxp2 15455 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ ((𝐵 logb 𝑋) ∈ ℝ ∧ (𝑀 / 𝑁) ∈ ℝ)) → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) | |
| 51 | 9, 14, 41, 24, 50 | syl22anc 1251 | . 2 ⊢ (𝜑 → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) |
| 52 | 49, 51 | mpbird 167 | 1 ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 ℝcr 7931 1c1 7933 · cmul 7937 < clt 8114 # cap 8661 / cdiv 8752 ℕcn 9043 2c2 9094 ℤcz 9379 ℤ≥cuz 9655 ℚcq 9747 ℝ+crp 9782 ↑cexp 10690 gcd cgcd 12318 ↑𝑐ccxp 15373 logb clogb 15459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 ax-pre-suploc 8053 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-disj 4024 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-2o 6510 df-oadd 6513 df-er 6627 df-map 6744 df-pm 6745 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-ioo 10021 df-ico 10023 df-icc 10024 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-fac 10878 df-bc 10900 df-ihash 10928 df-shft 11170 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ef 12003 df-e 12004 df-dvds 12143 df-gcd 12319 df-prm 12474 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-ntr 14612 df-cn 14704 df-cnp 14705 df-tx 14769 df-cncf 15087 df-limced 15172 df-dvap 15173 df-relog 15374 df-rpcxp 15375 df-logb 15460 |
| This theorem is referenced by: logbgcd1irrap 15486 |
| Copyright terms: Public domain | W3C validator |