![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > logbgcd1irraplemap | GIF version |
Description: Lemma for logbgcd1irrap 15102. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.) |
Ref | Expression |
---|---|
logbgcd1irraplem.x | ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) |
logbgcd1irraplem.b | ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) |
logbgcd1irraplem.rp | ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) |
logbgcd1irraplem.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
logbgcd1irraplem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
logbgcd1irraplemap | ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logbgcd1irraplem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) | |
2 | logbgcd1irraplem.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) | |
3 | logbgcd1irraplem.rp | . . . . 5 ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) | |
4 | logbgcd1irraplem.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | logbgcd1irraplem.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 1, 2, 3, 4, 5 | logbgcd1irraplemexp 15100 | . . . 4 ⊢ (𝜑 → (𝑋↑𝑁) # (𝐵↑𝑀)) |
7 | eluz2nn 9631 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
8 | 2, 7 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
9 | 8 | nnrpd 9760 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
10 | 1red 8034 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
11 | 8 | nnred 8995 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
12 | eluz2gt1 9667 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
13 | 2, 12 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝐵) |
14 | 10, 11, 13 | gtapd 8656 | . . . . . 6 ⊢ (𝜑 → 𝐵 # 1) |
15 | eluz2nn 9631 | . . . . . . . 8 ⊢ (𝑋 ∈ (ℤ≥‘2) → 𝑋 ∈ ℕ) | |
16 | 1, 15 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℕ) |
17 | 16 | nnrpd 9760 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
18 | rpcxplogb 15096 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | |
19 | 9, 14, 17, 18 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
20 | 19 | oveq1d 5933 | . . . 4 ⊢ (𝜑 → ((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) = (𝑋↑𝑁)) |
21 | znq 9689 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ) | |
22 | 4, 5, 21 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℚ) |
23 | qre 9690 | . . . . . . 7 ⊢ ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ) | |
24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℝ) |
25 | 5 | nncnd 8996 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
26 | 9, 24, 25 | cxpmuld 15070 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁)) |
27 | 4 | zcnd 9440 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
28 | 5 | nnap0d 9028 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 # 0) |
29 | 27, 25, 28 | divcanap1d 8810 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 / 𝑁) · 𝑁) = 𝑀) |
30 | 29 | oveq2d 5934 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵↑𝑐𝑀)) |
31 | cxpexpnn 15031 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) | |
32 | 8, 4, 31 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) |
33 | 30, 32 | eqtrd 2226 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐((𝑀 / 𝑁) · 𝑁)) = (𝐵↑𝑀)) |
34 | 9, 24 | rpcxpcld 15066 | . . . . . 6 ⊢ (𝜑 → (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℝ+) |
35 | 5 | nnzd 9438 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
36 | cxpexprp 15030 | . . . . . 6 ⊢ (((𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) | |
37 | 34, 35, 36 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑐𝑁) = ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) |
38 | 26, 33, 37 | 3eqtr3rd 2235 | . . . 4 ⊢ (𝜑 → ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) = (𝐵↑𝑀)) |
39 | 6, 20, 38 | 3brtr4d 4061 | . . 3 ⊢ (𝜑 → ((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁)) |
40 | relogbzcl 15084 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ) | |
41 | 2, 17, 40 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℝ) |
42 | 41 | recnd 8048 | . . . . 5 ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℂ) |
43 | 9, 42 | rpcncxpcld 15061 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) ∈ ℂ) |
44 | qcn 9699 | . . . . . 6 ⊢ ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℂ) | |
45 | 22, 44 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀 / 𝑁) ∈ ℂ) |
46 | 9, 45 | rpcncxpcld 15061 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℂ) |
47 | apexp1 10789 | . . . 4 ⊢ (((𝐵↑𝑐(𝐵 logb 𝑋)) ∈ ℂ ∧ (𝐵↑𝑐(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) | |
48 | 43, 46, 5, 47 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (((𝐵↑𝑐(𝐵 logb 𝑋))↑𝑁) # ((𝐵↑𝑐(𝑀 / 𝑁))↑𝑁) → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) |
49 | 39, 48 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁))) |
50 | apcxp2 15072 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ ((𝐵 logb 𝑋) ∈ ℝ ∧ (𝑀 / 𝑁) ∈ ℝ)) → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) | |
51 | 9, 14, 41, 24, 50 | syl22anc 1250 | . 2 ⊢ (𝜑 → ((𝐵 logb 𝑋) # (𝑀 / 𝑁) ↔ (𝐵↑𝑐(𝐵 logb 𝑋)) # (𝐵↑𝑐(𝑀 / 𝑁)))) |
52 | 49, 51 | mpbird 167 | 1 ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 1c1 7873 · cmul 7877 < clt 8054 # cap 8600 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 ℤ≥cuz 9592 ℚcq 9684 ℝ+crp 9719 ↑cexp 10609 gcd cgcd 12079 ↑𝑐ccxp 14992 logb clogb 15075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-pre-suploc 7993 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-2o 6470 df-oadd 6473 df-er 6587 df-map 6704 df-pm 6705 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-ioo 9958 df-ico 9960 df-icc 9961 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-bc 10819 df-ihash 10847 df-shft 10959 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 df-e 11792 df-dvds 11931 df-gcd 12080 df-prm 12246 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-ntr 14264 df-cn 14356 df-cnp 14357 df-tx 14421 df-cncf 14726 df-limced 14810 df-dvap 14811 df-relog 14993 df-rpcxp 14994 df-logb 15076 |
This theorem is referenced by: logbgcd1irrap 15102 |
Copyright terms: Public domain | W3C validator |