| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 9636 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | 0zd 9338 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
| 3 | | geolim.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | | geolim.2 |
. . . . . 6
⊢ (𝜑 → (abs‘𝐴) < 1) |
| 5 | 3, 4 | expcnv 11669 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
| 6 | | ax-1cn 7972 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 7 | | subcl 8225 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
| 8 | 6, 3, 7 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → (1 − 𝐴) ∈
ℂ) |
| 9 | | 1cnd 8042 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) |
| 10 | | 1red 8041 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℝ) |
| 11 | 3, 10, 4 | absltap 11674 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 # 1) |
| 12 | | apsym 8633 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 # 1
↔ 1 # 𝐴)) |
| 13 | 3, 6, 12 | sylancl 413 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴)) |
| 14 | 11, 13 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → 1 # 𝐴) |
| 15 | 9, 3, 14 | subap0d 8671 |
. . . . . 6
⊢ (𝜑 → (1 − 𝐴) # 0) |
| 16 | 3, 8, 15 | divclapd 8817 |
. . . . 5
⊢ (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ) |
| 17 | | nn0ex 9255 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 18 | 17 | mptex 5788 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V |
| 19 | 18 | a1i 9 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V) |
| 20 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
ℕ0) |
| 21 | 3 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
| 22 | 21, 20 | expcld 10765 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑𝑗) ∈ ℂ) |
| 23 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → (𝐴↑𝑛) = (𝐴↑𝑗)) |
| 24 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
| 25 | 23, 24 | fvmptg 5637 |
. . . . . . 7
⊢ ((𝑗 ∈ ℕ0
∧ (𝐴↑𝑗) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑗) = (𝐴↑𝑗)) |
| 26 | 20, 22, 25 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑗) = (𝐴↑𝑗)) |
| 27 | | expcl 10649 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐴↑𝑗) ∈
ℂ) |
| 28 | 3, 27 | sylan 283 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑𝑗) ∈ ℂ) |
| 29 | 26, 28 | eqeltrd 2273 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑗) ∈ ℂ) |
| 30 | | expp1 10638 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐴↑(𝑗 + 1)) = ((𝐴↑𝑗) · 𝐴)) |
| 31 | 3, 30 | sylan 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴↑𝑗) · 𝐴)) |
| 32 | 28, 21 | mulcomd 8048 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴↑𝑗) · 𝐴) = (𝐴 · (𝐴↑𝑗))) |
| 33 | 31, 32 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = (𝐴 · (𝐴↑𝑗))) |
| 34 | 33 | oveq1d 5937 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 · (𝐴↑𝑗)) / (1 − 𝐴))) |
| 35 | 8 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (1
− 𝐴) ∈
ℂ) |
| 36 | 15 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (1
− 𝐴) #
0) |
| 37 | 21, 28, 35, 36 | div23apd 8855 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴 · (𝐴↑𝑗)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴↑𝑗))) |
| 38 | 34, 37 | eqtrd 2229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴↑𝑗))) |
| 39 | | peano2nn0 9289 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) |
| 40 | 39 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
ℕ0) |
| 41 | 21, 40 | expcld 10765 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ) |
| 42 | 41, 35, 36 | divclapd 8817 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ ℂ) |
| 43 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1)) |
| 44 | 43 | oveq2d 5938 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (𝐴↑(𝑛 + 1)) = (𝐴↑(𝑗 + 1))) |
| 45 | 44 | oveq1d 5937 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))) |
| 46 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) |
| 47 | 45, 46 | fvmptg 5637 |
. . . . . . 7
⊢ ((𝑗 ∈ ℕ0
∧ ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ ℂ) →
((𝑛 ∈
ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))) |
| 48 | 20, 42, 47 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))) |
| 49 | 26 | oveq2d 5938 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑗)) = ((𝐴 / (1 − 𝐴)) · (𝐴↑𝑗))) |
| 50 | 38, 48, 49 | 3eqtr4d 2239 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑗))) |
| 51 | 1, 2, 5, 16, 19, 29, 50 | climmulc2 11496 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ ((𝐴 / (1 − 𝐴)) · 0)) |
| 52 | 16 | mul01d 8419 |
. . . 4
⊢ (𝜑 → ((𝐴 / (1 − 𝐴)) · 0) = 0) |
| 53 | 51, 52 | breqtrd 4059 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ 0) |
| 54 | 8, 15 | recclapd 8808 |
. . 3
⊢ (𝜑 → (1 / (1 − 𝐴)) ∈
ℂ) |
| 55 | | seqex 10541 |
. . . 4
⊢ seq0( + ,
𝐹) ∈
V |
| 56 | 55 | a1i 9 |
. . 3
⊢ (𝜑 → seq0( + , 𝐹) ∈ V) |
| 57 | | expcl 10649 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈
ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ) |
| 58 | 3, 39, 57 | syl2an 289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ) |
| 59 | 58, 35, 36 | divclapd 8817 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ ℂ) |
| 60 | 48, 59 | eqeltrd 2273 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) ∈ ℂ) |
| 61 | | nn0cn 9259 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
ℂ) |
| 62 | 61 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
ℂ) |
| 63 | | pncan 8232 |
. . . . . . 7
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑗 + 1)
− 1) = 𝑗) |
| 64 | 62, 6, 63 | sylancl 413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑗 + 1) − 1) = 𝑗) |
| 65 | 64 | oveq2d 5938 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(0...((𝑗 + 1) − 1)) =
(0...𝑗)) |
| 66 | 65 | sumeq1d 11531 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(0...((𝑗 + 1) −
1))(𝐴↑𝑘) = Σ𝑘 ∈ (0...𝑗)(𝐴↑𝑘)) |
| 67 | | 1cnd 8042 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 1 ∈
ℂ) |
| 68 | 67, 58, 35, 36 | divsubdirapd 8857 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((1
− (𝐴↑(𝑗 + 1))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))) |
| 69 | 11 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 # 1) |
| 70 | 21, 69, 40 | geoserap 11672 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(0...((𝑗 + 1) −
1))(𝐴↑𝑘) = ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴))) |
| 71 | 48 | oveq2d 5938 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((1 / (1
− 𝐴)) − ((𝑛 ∈ ℕ0
↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))) |
| 72 | 68, 70, 71 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(0...((𝑗 + 1) −
1))(𝐴↑𝑘) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗))) |
| 73 | | simpll 527 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → 𝜑) |
| 74 | | elnn0uz 9639 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
| 75 | 74 | biimpri 133 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) |
| 76 | 75 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → 𝑘 ∈ ℕ0) |
| 77 | | geolim.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐴↑𝑘)) |
| 78 | 73, 76, 77 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → (𝐹‘𝑘) = (𝐴↑𝑘)) |
| 79 | 20, 1 | eleqtrdi 2289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
(ℤ≥‘0)) |
| 80 | 21 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → 𝐴 ∈ ℂ) |
| 81 | 80, 76 | expcld 10765 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘0)) → (𝐴↑𝑘) ∈ ℂ) |
| 82 | 78, 79, 81 | fsum3ser 11562 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝑗)(𝐴↑𝑘) = (seq0( + , 𝐹)‘𝑗)) |
| 83 | 66, 72, 82 | 3eqtr3rd 2238 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq0( +
, 𝐹)‘𝑗) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗))) |
| 84 | 1, 2, 53, 54, 56, 60, 83 | climsubc2 11498 |
. 2
⊢ (𝜑 → seq0( + , 𝐹) ⇝ ((1 / (1 − 𝐴)) − 0)) |
| 85 | 54 | subid1d 8326 |
. 2
⊢ (𝜑 → ((1 / (1 − 𝐴)) − 0) = (1 / (1 −
𝐴))) |
| 86 | 84, 85 | breqtrd 4059 |
1
⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴))) |