| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringmneg2 | GIF version | ||
| Description: Negation of a product in a ring. (mulneg2 8488 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringneglmul.t | ⊢ · = (.r‘𝑅) |
| ringneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| ringneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringneglmul.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringgrp 13838 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 5 | 1, 4 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 6 | ringneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | eqid 2206 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 6, 7 | ringidcl 13857 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 9 | 1, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 10 | ringneglmul.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
| 11 | 6, 10 | grpinvcl 13455 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
| 12 | 5, 9, 11 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
| 13 | ringneglmul.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 14 | 6, 13 | ringass 13853 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅))))) |
| 15 | 1, 2, 3, 12, 14 | syl13anc 1252 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅))))) |
| 16 | 6, 13 | ringcl 13850 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 1, 2, 3, 16 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 6, 13, 7, 10, 1, 17 | ringnegr 13889 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑁‘(𝑋 · 𝑌))) |
| 19 | 6, 13, 7, 10, 1, 3 | ringnegr 13889 | . . 3 ⊢ (𝜑 → (𝑌 · (𝑁‘(1r‘𝑅))) = (𝑁‘𝑌)) |
| 20 | 19 | oveq2d 5973 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅)))) = (𝑋 · (𝑁‘𝑌))) |
| 21 | 15, 18, 20 | 3eqtr3rd 2248 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 .rcmulr 12985 Grpcgrp 13407 invgcminusg 13408 1rcur 13796 Ringcrg 13833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-mgp 13758 df-ur 13797 df-ring 13835 |
| This theorem is referenced by: ringm2neg 13892 ringsubdi 13893 |
| Copyright terms: Public domain | W3C validator |