| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ringmneg2 | GIF version | ||
| Description: Negation of a product in a ring. (mulneg2 8422 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| ringneglmul.b | ⊢ 𝐵 = (Base‘𝑅) | 
| ringneglmul.t | ⊢ · = (.r‘𝑅) | 
| ringneglmul.n | ⊢ 𝑁 = (invg‘𝑅) | 
| ringneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| ringneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| ringneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| ringmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringneglmul.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringgrp 13557 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 5 | 1, 4 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 6 | ringneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | eqid 2196 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 6, 7 | ringidcl 13576 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) | 
| 9 | 1, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) | 
| 10 | ringneglmul.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
| 11 | 6, 10 | grpinvcl 13180 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(1r‘𝑅)) ∈ 𝐵) | 
| 12 | 5, 9, 11 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑁‘(1r‘𝑅)) ∈ 𝐵) | 
| 13 | ringneglmul.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 14 | 6, 13 | ringass 13572 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅))))) | 
| 15 | 1, 2, 3, 12, 14 | syl13anc 1251 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅))))) | 
| 16 | 6, 13 | ringcl 13569 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) | 
| 17 | 1, 2, 3, 16 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | 
| 18 | 6, 13, 7, 10, 1, 17 | ringnegr 13608 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑁‘(𝑋 · 𝑌))) | 
| 19 | 6, 13, 7, 10, 1, 3 | ringnegr 13608 | . . 3 ⊢ (𝜑 → (𝑌 · (𝑁‘(1r‘𝑅))) = (𝑁‘𝑌)) | 
| 20 | 19 | oveq2d 5938 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅)))) = (𝑋 · (𝑁‘𝑌))) | 
| 21 | 15, 18, 20 | 3eqtr3rd 2238 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 .rcmulr 12756 Grpcgrp 13132 invgcminusg 13133 1rcur 13515 Ringcrg 13552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-mgp 13477 df-ur 13516 df-ring 13554 | 
| This theorem is referenced by: ringm2neg 13611 ringsubdi 13612 | 
| Copyright terms: Public domain | W3C validator |