Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3pos | GIF version |
Description: The number 3 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3pos | ⊢ 0 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8897 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1re 7871 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 2pos 8918 | . . 3 ⊢ 0 < 2 | |
4 | 0lt1 7996 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 8360 | . 2 ⊢ 0 < (2 + 1) |
6 | df-3 8887 | . 2 ⊢ 3 = (2 + 1) | |
7 | 5, 6 | breqtrri 3991 | 1 ⊢ 0 < 3 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3965 (class class class)co 5821 0cc0 7726 1c1 7727 + caddc 7729 < clt 7906 2c2 8878 3c3 8879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4591 df-iota 5134 df-fv 5177 df-ov 5824 df-pnf 7908 df-mnf 7909 df-ltxr 7911 df-2 8886 df-3 8887 |
This theorem is referenced by: 3ne0 8922 3ap0 8923 4pos 8924 8th4div3 9046 halfpm6th 9047 3rp 9559 sqrt9 10941 ef01bndlem 11646 cos2bnd 11650 sin01gt0 11651 cos01gt0 11652 flodddiv4 11817 coseq0negpitopi 13128 tangtx 13130 sincos6thpi 13134 cos02pilt1 13143 ex-gcd 13278 |
Copyright terms: Public domain | W3C validator |