| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3pos | GIF version | ||
| Description: The number 3 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3pos | ⊢ 0 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9168 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1re 8133 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 2pos 9189 | . . 3 ⊢ 0 < 2 | |
| 4 | 0lt1 8261 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 8626 | . 2 ⊢ 0 < (2 + 1) |
| 6 | df-3 9158 | . 2 ⊢ 3 = (2 + 1) | |
| 7 | 5, 6 | breqtrri 4109 | 1 ⊢ 0 < 3 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 (class class class)co 5994 0cc0 7987 1c1 7988 + caddc 7990 < clt 8169 2c2 9149 3c3 9150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-iota 5274 df-fv 5322 df-ov 5997 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-2 9157 df-3 9158 |
| This theorem is referenced by: 3ne0 9193 3ap0 9194 4pos 9195 8th4div3 9318 halfpm6th 9319 3rp 9843 fz0to4untppr 10308 sqrt9 11545 ef01bndlem 12253 cos2bnd 12257 sin01gt0 12259 cos01gt0 12260 flodddiv4 12433 slotsdifunifndx 13251 coseq0negpitopi 15495 tangtx 15497 sincos6thpi 15501 cos02pilt1 15510 lgsdir2lem1 15692 ex-gcd 16025 |
| Copyright terms: Public domain | W3C validator |