| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3pos | GIF version | ||
| Description: The number 3 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3pos | ⊢ 0 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9119 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1re 8084 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 2pos 9140 | . . 3 ⊢ 0 < 2 | |
| 4 | 0lt1 8212 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 8577 | . 2 ⊢ 0 < (2 + 1) |
| 6 | df-3 9109 | . 2 ⊢ 3 = (2 + 1) | |
| 7 | 5, 6 | breqtrri 4075 | 1 ⊢ 0 < 3 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4048 (class class class)co 5954 0cc0 7938 1c1 7939 + caddc 7941 < clt 8120 2c2 9100 3c3 9101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-xp 4686 df-iota 5238 df-fv 5285 df-ov 5957 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-2 9108 df-3 9109 |
| This theorem is referenced by: 3ne0 9144 3ap0 9145 4pos 9146 8th4div3 9269 halfpm6th 9270 3rp 9794 fz0to4untppr 10259 sqrt9 11409 ef01bndlem 12117 cos2bnd 12121 sin01gt0 12123 cos01gt0 12124 flodddiv4 12297 slotsdifunifndx 13114 coseq0negpitopi 15358 tangtx 15360 sincos6thpi 15364 cos02pilt1 15373 lgsdir2lem1 15555 ex-gcd 15781 |
| Copyright terms: Public domain | W3C validator |