| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3pos | GIF version | ||
| Description: The number 3 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3pos | ⊢ 0 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9188 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1re 8153 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 2pos 9209 | . . 3 ⊢ 0 < 2 | |
| 4 | 0lt1 8281 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 8646 | . 2 ⊢ 0 < (2 + 1) |
| 6 | df-3 9178 | . 2 ⊢ 3 = (2 + 1) | |
| 7 | 5, 6 | breqtrri 4110 | 1 ⊢ 0 < 3 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4083 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 < clt 8189 2c2 9169 3c3 9170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-2 9177 df-3 9178 |
| This theorem is referenced by: 3ne0 9213 3ap0 9214 4pos 9215 8th4div3 9338 halfpm6th 9339 3rp 9863 fz0to4untppr 10328 sqrt9 11567 ef01bndlem 12275 cos2bnd 12279 sin01gt0 12281 cos01gt0 12282 flodddiv4 12455 slotsdifunifndx 13273 coseq0negpitopi 15518 tangtx 15520 sincos6thpi 15524 cos02pilt1 15533 lgsdir2lem1 15715 ex-gcd 16119 |
| Copyright terms: Public domain | W3C validator |